• Title/Summary/Keyword: Earth electric potential

Search Result 70, Processing Time 0.022 seconds

Electric Leakage Point Detection System of Underground Power Cable Using Half-period Modulated Transmission Waveform and Earth Electric Potential Measurement (반주기 변조된 송신파형과 대지전위 측정을 이용한 지중 케이블 누전 고장점 탐지 시스템)

  • Jeon, Jeong Chay;Yoo, Jae-Geun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.12
    • /
    • pp.2113-2118
    • /
    • 2016
  • The precise detection of electric leakage point of underground power cable is very important to reduce cost and time of maintenance and prevent electric shock accident through expedite repair of electric leakage point. This paper proposes a electric leakage point detection system underground power cable using of half-period modulated transmission waveform and earth electric potential measurement. The developed system is composed of transmitter to generate the wanted pulse waveform, receiver to measure and display earth electric potential by the transmitted pulse in electric leakage point and PC Software program to display of GPS coordinate on detection cable line. The performance of the electric leakage point detection system was tested in the constructed underground cable leakage detection test bed. The test results on signal generation voltage precision of signal transmitter, mean detection earth voltage, mean detection leakage current and electric leakage point detection error showed the developed system can be used in electric leakage point detection underground power cable.

The measurement of the half period modulated pulse on earth for detection of a underground electric leakage point (지중선로 누전점 탐지를 위한 반주기 변조된 대지 펄스 측정)

  • Kim, Jae-Hyun;Jeon, Jeong-Chay;Yoo, Jae-Geun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.11
    • /
    • pp.5123-5127
    • /
    • 2011
  • Research and development for the technology, that is about maintenance and accidents prevention of underground power distribution line, are demanding. The precise detection of leakage point of underground power line is very important, because it is difficult to detect the exact location of a fault in underground power line and to repair faults. When earth electric potential is measured to detect underground electric leakage point after transmitting AC electric pulse wave to underground power line, it must be measured in a specific half period of AC pulse wave because the distribution of the electric earth potential varies with the polarity of the transmitted wave. In this paper we proposed the measurement of half period modulated earth potential as a method to detect a underground leakage point. And We compared the proposed method with other methods. Through experiments we verified that the proposed method can be implemented and operated properly.

Interference Coefficient of X axis for Electrodes using Variation of Plural Earth Electrodes (복수접지극의 변화에 따른 전극의 X축 간섭계수)

  • Kim Sung Sam;Kim Ju Chan;Song Won Pyo;Koh Hee Seog
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.449-451
    • /
    • 2004
  • In the building, there are a lot of electricity, electrodes, and communication equipment. Many of those equipment needs to earthing. Naturally, the earth electrodes are constructed in the site of a building. In such a situation, when electric current flows into a certain earthing system the potential of other earthing systems rises. That is, the potential interference will take place between the earth electrodes. The conventional study has been considered by only the relation of the distance between the earth electrodes using the potential distribution formula of earth surface. However, it is necessary to inquire strictly, taking the surface potential of electrodes by electrode form into consideration. In this paper, basic formula is deduced on the basis of both electrodes surface potential of earth electrode as a source of the potential interference and earth electrode which receives the potential interference.

  • PDF

A Study on the Generation of the Earth Potential and Communication Line Noise. (대지전위와 통신회선 잡음 발생에 대한 고찰)

  • Yeo, Sang-Kun;Park, Chan-Won
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2007.05a
    • /
    • pp.33-38
    • /
    • 2007
  • This paper presents a experimental evidence of the generation of the earth potential and communication line noise from the electric railway. There is a critical measurement err in case of measuring the electrical power induced noise voltage and degree of cable balance in the field of earth potential generated. As a results, it has been found that the conventional cable has more noise immunity than shielded cable near the railway where the earth current flows through the sheath layer.

  • PDF

Analyses of Earth Surface Potentials Depending on Soil Structures (대지구조에 따른 대지표면전위의 분석)

  • Lee, Bok-Hee;Baek, Young-Hwan;Jung, Hyun-Wook
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.10
    • /
    • pp.1796-1801
    • /
    • 2007
  • This paper presents electric potential rise on the surface of the earth due to ground currents. It is the aim of this paper to propose fundamental data relevant to the earth surface potentials depending on the soil structures. The earth potential rise, touch and step voltages in the immediate vicinity of the ground rod of a distribution pole were measured and analyzed. The results described in this paper are based on laboratory measurements which were intended to simulate conditions existing in actual installations. As a result, the earth surface potential rise, touch and step voltages strongly depend on the soil structure. The highest earth surface potential occurred in the vicinity of the top of ground rod. When the ground rod was installed in the distance range of $1{\sim}1.5\;m$ from distribution pole, the highest touch voltages appeared near the place of 1 m on the straight line connecting the distribution pole to ground rod.

Potential Interference between the Earth Electrode (접지극의 전위간섭)

  • Kim, Ju-Chan;Kim, Sung-Sam;Koh, Hee-Seog
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2004.05a
    • /
    • pp.48-52
    • /
    • 2004
  • Recently, there are many electricity, electronics, and communication equipment which need to earthing in the building. When electric current flows into a certain earthing system in the same building, the potential of other earthing system rises. This potential interference repuire surface potential of electrodes by electrode shape. In this paper basic formula is deduced on the basis of both electrodes surface potential of earth electrode as a source of the potential interference and earth electrode which receive the potential interference. The degree of potential interference as multiple earth electrode is verified the simulated results by means of the simple model in advance.

  • PDF

A Study on Separation Distance Calculation Model for Limitation of Earth Potential Rise nearby Tower Footings (송전철탑 부근의 대지전위 억제를 위한 이적거리 산정모델 연구)

  • Choi, Jong-Kee;Lee, Dong-Il
    • Proceedings of the KIEE Conference
    • /
    • 2007.11a
    • /
    • pp.212-213
    • /
    • 2007
  • In case of a line-to-ground fault at transmission lines, a portion of fault current will flow into the earth through the footings of the faulted tower causing electrical potential rise nearby the faulted tower footings. In this situation, any buried pipelines or structures nearby the faulted tower can be exposed to the electrical stress by earth potential rise. Although many research works has been conducted on this phenomena, there has been no clear answer of the required separation distance between tower footings and neary buried pipeline because of its dependancy on the soil electrical charactersics of the concerned area and the faulted system. In this paper, an analytical formula to calculate the requried sepeartion distance from the faulted tower has been derived.

  • PDF

Analysis of Electric Shock Hazards due to Touch Current According to Soil Resistivity Ratio in Two-layer Earth Model (2층 대지모델에서 대지저항률의 비율에 따른 접촉전류에 의한 감전의 위험성 분석)

  • Lee, Bok-Hee;Kim, Tae-Ki;Cho, Yong-Seung;Choi, Jong-Hyuk
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.6
    • /
    • pp.68-74
    • /
    • 2011
  • The touch or step voltages which exist in the vicinity of a grounding electrode are closely related to the earth structure and resistivity and the ground current. The grounding design approach is required to determine the grounding electrode location where the hazardous voltages are minimized. In this paper, in order to propose a method of mitigating the electric shock hazards caused by the ground surface potential rise in the vicinity of a counterpoise, the hazards relevant to touch voltage were evaluated as a function of the soil resistivity ratio $\rho_2/\rho_1$ for several practical values of two-layer earth structures. The touch voltage and current on the ground surface just above the test electrode are calculated with CDEGS program. As a consequence, it was found that burying a grounding electrode in the soil with low resistivity is effective to reduce the electric shock hazards. In the case that the bottom layer soil where a counterpoise is buried has lower resistivity than the upper layer soil, when the upper layer soil resistivity is increased, the surface potential is slightly raised, but the current through the human body is reduced with increasing the upper layer soil resistivity because of the greater contact resistance between the earth surface and the feet. The electric shock hazard in the vicinity of grounding electrodes is closely related to soil structure and resistivity and are reduced with increasing the ration of the upper layer resistivity to the bottom layer resistivity in two-layer soil.

Potential Interference of Plural Grounding Electrodes (복수접지극의 전위간섭)

  • Kim Ju Chan;Choi Jong Kyu;Lee Chung Sik;Koh Hee Seog
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.27-29
    • /
    • 2004
  • Recently, there are many electricity, electronics, and communication equipment which need to earthing in the building. When electric current flows into a certain earthing system in the same building, the potential of other earthing system rises. This potential interference require surface potential of electrods by electrode shape. In this paper basic formula is deduced on the basis of both electrodes surface potential of earth electrode as a source of the potential interference and earth electrode which receive the potential interference. The degree of potential interference as multiple earth electrode is verified the simulated results by means of the simple model in advance.

  • PDF

Personnel Safety Related to Disconnection of PEN Conductor in TN-C-S System (TN-C-S계통에서 PEN도체 단선이 인체안전에 미치는 영향)

  • Kim, Jung-Cheol;Lee, Kyu-Sun;Lee, Bok-Hee
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.5
    • /
    • pp.58-64
    • /
    • 2012
  • In electric power supply systems, an earthing system determines the electric potential of the conductors related to that of the Earth's surface. The choice of earthing system has implications for the safety of the power supply systems. There are considerably different regulations for earthing (grounding) systems in each country. A protective earth(PE) conductor ensures that all exposed conductive surfaces are at the same electric potential as the earth surface. This paper deals with that when PEN conductor of TN-C-S system is disconnected, dangerous touch voltage causes personnel body to be harmed and human being's property to be damaged seriously. For this reason, this paper explains how serious problems can occur when the fault current flows. As a consequence, we can understand how we can design earthing system properly to ensure the personnel safety against earth faults. The result shows the way that TN-C-S system can be applied safely in Korea.