• Title/Summary/Keyword: Earth Tide

Search Result 149, Processing Time 0.023 seconds

Earth Rotation and Earth Tide: Review (지구자전과 지구조석 연구소개)

  • Sung-Ho Na;Yu Yi
    • Geophysics and Geophysical Exploration
    • /
    • v.26 no.4
    • /
    • pp.238-267
    • /
    • 2023
  • Studies on Earth's rotation and tide since the 19th century are briefly summarized. The theories of precession, nutation, polar motion, and periodic/secular changes in the rate of rotation are described individually. In addition, a brief review of the Milankovitch theory - the hypothesis of the relationship between the Earth's spin/orbital rotational state and the ice ages - is given. Finally, Earth's tides and their theoretical models are briefly explained. Some detailed technical content is summarized in the appendices.

Spatio-temporal Structure of Diurnal and Semidiurnal Tides in Geopotential Height Field (지위고도장의 일주기 및 반일주기 조석의 시공간적 구조)

  • Cho, Hyeong-Oh;Son, Seok-Woo;Lee, Yong-Hee
    • Journal of the Korean earth science society
    • /
    • v.37 no.7
    • /
    • pp.465-475
    • /
    • 2016
  • The diurnal and semidiurnal tides in the global atmosphere are examined using 3-hourly geopotential height field of the state-of-the-art reanalysis data. Unlike the previous studies, the spatial structure and seasonality of those tides are analyzed from the surface of the earth to the stratosphere. It is found that, at most levels, diurnal tide is strong in the midlatitudes while semidiurnal tide is predominant in the tropics. The former shows strong seasonal cycle with a larger amplitude in summer than in winter in both hemispheres. This is different from the semidiurnal tide which has essentially no seasonal cycle. In term of the vertical structure, while semidiurnal tide has a barotropic structure, diurnal tide exhibits a distinct vertical structure with increased amplitude and height. Especially tropical diurnal tide exhibits a nearly opposite phase from the surface to the free troposphere, and to the upper stratosphere. Its amplitude also varies nonlinearly with height, possibly influenced by water vapor, ozone, gravity waves and solar radiation.

Some Theoretical Considerations in Body Tide Calculation (고체지구조석계산에 있어 몇 가지 이론적 고찰)

  • Na, Sung-Ho;Shin, Young-Hong;Baek, Jeong-Ho
    • Geophysics and Geophysical Exploration
    • /
    • v.14 no.2
    • /
    • pp.133-139
    • /
    • 2011
  • The largest terms in the solid Earth body tide calculation are second degree spherical harmonic components due to the moon or the sun, and they compose about 98 percent of total contribution. Each degree harmonics of the tidal perturbation should be evaluated through multiplication with distinct Love numbers or their combinations. Correct evaluation of these terms in gravity tide is considered with re-calculated Love numbers. Frequency dependence of Love numbers for spherical harmonic tide upon the order number is discussed. Tidal displacement and tidally induced deviation of the vertical are also evaluated. Essential concepts underlying the body tide calculation are briefly summarized.

A Study on the Earth Tide Variations by ET Gravimeter (ET 중력계에 의한 기조력 변화 연구)

  • Park, Jung Hwan;Han, Uk
    • Economic and Environmental Geology
    • /
    • v.31 no.2
    • /
    • pp.141-147
    • /
    • 1998
  • Earth tide observations were taken at AMIST observatory in Seoul by LaCoste-Romberg ET gravimeter from September 2 to 16, 1997 for determining the gravimetric factor ($\delta$) and analyzing the tidal components. Meter drifts were corrected by regression and then denoised by threshholding wavelet, a data processing tool. The mean value of $\delta$ is 1.2 and the mean phase lag of & ($M_2$, $S_2$) and & $K_1$, $O_1$) is $0.07{\pm}0.03^{\circ}$ and $0.08{\pm}0.07^{\circ}$ by analyzing the observed earth tides. For yielding measurements of gravity accurate to about 0.01 mgal, the Earth tide observations are required by ET meter. The tidal variations are due to the planet's distance and zenith angle. With the exception of Earth-Moon and Earth-Sun mechanism, the possible causes of tidal variations are tectonical, meterological and hydrological perturbations. The long period and broad observations are required for determining the state of art gravimetric factor in Korea.

  • PDF

A Study on the Free Oscillation of the Earth with Earth Tide Gravimeter (지구 조석 중력계에 의한 지구의 자유진동에 관한 연구)

  • 조원희
    • Economic and Environmental Geology
    • /
    • v.32 no.6
    • /
    • pp.653-660
    • /
    • 1999
  • Any mechanical system has a natural oscillation which can be excited, and the earth is no exception. The earth can oscillate in an indefinite number of normal modes of oscillation, rather like a giant bell. The various free modes are generally sparated into two categoridal modes and toroidal modes. Clearly the toroidal modes will produce no perturvation of the gravity field and no vertical acceleration on the surface of the earth. Hence only spheroidal modes can be detected with a gravimeter. EarthTide gravimeter was installed at AIMST in order to observe free modes of the earth. Eight major earthquakes including chinese earthquake (magnitude 7.3) with free oscillations of the earth are observed during one year (1998. 8. 1∼1999.7.31). And then the earth tides components were eilminated from earthquake records using a numerical Butterworth highpass filter. Spectral analysis of gravity readings repersent that 48 observations of shheroidal modes. The relationships between instrumental observations and theoretical predictions based on the Gutenberg earth model agree well those resulting from free oscillation in Korea.

  • PDF

Nitrate uptake of the red tide dinoflagellate Prorocentrum micans measured using a nutrient repletion method: effect of light intensity

  • Lee, Kyung Ha;Jeong, Hae Jin;Kim, Hye Jeong;Lim, An Suk
    • ALGAE
    • /
    • v.32 no.2
    • /
    • pp.139-153
    • /
    • 2017
  • The ability of a red tide species to take up nutrients is a critical factor affecting its red tide dynamics and species competition. Nutrient uptake by red tide species has been conventionally measured by incubating nutrient-depleted cells for a short period at 1 or 2 light intensities. This method may be applicable to certain conditions under which cells remain in oligotrophic water for a long time and high nutrients are suddenly introduced. Thus, a new method should be developed that can be applicable to the conditions under which cells are maintained in eutrophicated waters in healthy conditions and experience light and dark cycles and different light intensities during vertical migration. In this study, a new repletion method reflecting these conditions was developed. The nitrate uptake rates of the red tide dinoflagellate Prorocentrum micans originally maintained in nitrate repletion and depletion conditions as a function of nitrate concentration were measured. With increasing light intensity from 10 to $100{\mu}E\;m^{-2}s^{-1}$, the maximum nitrate uptake rate ($V_{max}$) of P. micans increased from 3.6 to $10.8 pM\;cell^{-1}d^{-1}$ and the half saturation constant ($K_{s-NO3}$) increased from 4.1 to $6.9{\mu}M$. At $20{\mu}E\;m^{-2}s^{-1}$, the $V_{max}$ and $K_{s-NO3}$ of P. micans originally maintained in a nitrate repletion condition were similar to those maintained in a nitrate depletion condition. Thus, differences in cells under nutrient repletion and depletion conditions may not affect $K_{s-NO3}$ and $V_{max}$. Moreover, different light intensities may cause differences in the nitrate uptake of migratory phototrophic dinoflagellates.

Detection technique of Red Tide Using GOCI Level 2 Data (GOCI Level 2 Data를 이용한 적조탐지 기법 연구)

  • Bak, Su-Ho;Kim, Heung-Min;Hwang, Do-Hyun;Yoon, Hong-Joo;Seo, Won-Chan
    • Korean Journal of Remote Sensing
    • /
    • v.32 no.6
    • /
    • pp.673-679
    • /
    • 2016
  • This study propose a new method to detect Cochlodinium polykrikoides red tide occurring in South Sea of Korea using Water-leaving Radiance data and Absorption Coefficients data of Geostationary Ocean Color Imager (GOCI). C. polykrikoides were analyzed and the irradiance and light emission characteristics of the wavelength range from 412 nm to 555 nm were confirmed. The detection technique proposed in this study detects the red tide occurring in the optically complex South Sea. Based on these results, it can be used for future red tide prevention.

An Astronomer's View on the Current College-Level Textbook Descriptions of Tides

  • Ahn, Kyung-Jin
    • Journal of the Korean earth science society
    • /
    • v.30 no.5
    • /
    • pp.671-681
    • /
    • 2009
  • In the equilibrium theory of tides by Newton, tide on the Earth is a phenomenon driven by differential gravity contributed both by the Sun and the Moon. Due to the direct link of the generic tidal effect to the oceanic tides, college students in the earth science education department are exposed to this theory through oceanography lectures as well as astronomy lectures. Common oceanography textbooks adopt a non-inertial reference frame fixed to the Earth in which the fictitious, centrifugal force appears. This has a potential risk to provide misconceptions among students in various aspects including the followings: 1) this is how Newton originally derived the equilibrium theory of tides, and 2) the tide is a phenomenon appearing only in rotating systems. We show that in astronomy, a much simpler description, which employs the inertial frame, is generally used to explain tides and thus causes less confusion. We argue that the description used in astronomy is preferable both in the viewpoints of simplicity and ease of interpretation. Moreover, on a historical basis, an inertial frame was adopted by Newton in Principia to explain tides. Thus, the description used in astronomy is consistent with Newton's original approach. We also present various astrophysical tides which do not comply with the concept of centrifugal force in general. We therefore argue that the description used in oceanography should be compensated by that in astronomy, due to its complexity, historical inconsistency and limited applicability.

A Study of sea Dike meterials loss due to Scouring and Consolidation Settlement During the Periond of Construction on Construction on the West Cost of Korea (서해암 방조제 공사 기간중 유실토량 측정시험)

  • 안재숙
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.14 no.1
    • /
    • pp.2503-2519
    • /
    • 1972
  • The studies were carried out to find the cause and the quantitative evaluation of sea dike materials loss which is occured during the period of construction works for the tideland reclamation projects on the west coast of Korea. Major subjects to studies were to establish the typical relationships between the tidal flow and the movement of dike materials, the tidal-flow and the erosion, the dike materials and the ratio of material movement(losses), construction methods and the ratio of materials movement (losses). Based on the above subjects, the studies were made for the purpose of obtain the following informations; (1) Collecting and evaluaing the data of dike material losses due to foundation settlement, from designed existing dikes on the west coast. (2) By the field investigation at A-San Sea Dike, Pyong Taek Project, the Comparison would be made by the relationships between the tide velocity and the movement of dike foundation under the natural conditions and the period of construction so that find out the relationship between the dike materials of foundation situation and settlements. With regard to the dike construction works, it is so difficult to calculate the exact quantity of material losses due to the foundation settlements. The major factors that affect the settlement losses of the dike materials are: (1) Topographical variation (2) Swepting the sectional area of dike by the tide velocity. (3) Dumping riprap to the outerside of dike during the period of construction works. (4) Sectional area losses by the cause of occurence of the new tide channels. (5) material losses by the heavy storms. (6) Consolidation settlement by the foundation weakness. (7) Material losses by the earth materials by tide flow. Most hi호 material losses were occured by the Consolidation settlement due to the foundation weakness, the maximum tide velocities due to decrease the cross sectional area of the gaps and erosion of foundation due to the range of tide, Inner and outerside of dike, or dike material loses due to the tide flow. Final conclusion would be obtained by the continuous measurement of consolidation settlement at the stage of final clusure of the dike. (It is scheduled to close on the end of 1972) However, intermediate conclusion can be introduced as follows: (1) The estimation of material(losses) during the period of construction works for the existing sea-dikes up to date were only empirical. The material losses at the general closure for design was estimated at 10% of the riprap, 20% of the earth materials, and 20% of the riprap, 40% of the earth materials at the final closure of the dike. The final closure estimated double quantity to the general closure, but it is still doubt. (2) The ratio of consolidation settlements was found smaller than the calculated quantity. It can be foreseen that settlement speeds is higher thom the calculated speeds. (3) The movement of dike foundation under the natural conditions were not so depends on the geological conditions of the foundation. (4) When the tide velocities was estimated 100 at the normal tide, it was estimated 125 at the high tide and 55 at the low tide. The tide velocities at the low tide shows apparently lower than the high tide and the higher velocities at the deep water depth.

  • PDF

Ichthyotoxic Cochlodinium polykrikoides red tides offshore in the South Sea, Korea in 2014: II. Heterotrophic protists and their grazing impacts on red-tide organisms

  • Lim, An Suk;Jeong, Hae Jin;Seong, Kyeong Ah;Lee, Moo Joon;Kang, Nam Seon;Jang, Se Hyeon;Lee, Kyung Ha;Park, Jae Yeon;Jang, Tae Young;Yoo, Yeong Du
    • ALGAE
    • /
    • v.32 no.3
    • /
    • pp.199-222
    • /
    • 2017
  • Occurrence of Cochlodinium polykrikoides red tides have resulted in considerable economic losses in the aquaculture industry in many countries, and thus predicting the process of C. polykrikoides red tides is a critical step toward minimizing those losses. Models predicting red tide dynamics define mortality due to predation as one of the most important parameters. To investigate the roles of heterotrophic protists in red tide dynamics in the South Sea of Korea, the abundances of heterotrophic dinoflagellates (HTDs), tintinnid ciliates (TCs), and naked ciliates (NCs) were measured over one- or two-week intervals from May to Nov 2014. In addition, the grazing impacts of dominant heterotrophic protists on each red tide species were estimated by combining field data on red tide species abundances and dominant heterotrophic protist grazers with data obtained from the literature concerning ingestion rates of the grazers on red tide species. The abundances of HTDs, TCs, and NCs over the course of this study were high during or after red tides, with maximum abundances of 82, 49, and $35cells\;mL^{-1}$, respectively. In general, the dominant heterotrophic protists differed when different species caused red tides. The HTDs Polykrikos spp. and NCs were abundant during or after C. polykrikoides red tides. The mean and maximum calculated grazing coefficients of Polykrikos spp. and NCs on populations of co-occurring C. polykrikoides were $1.63d^{-1}$ and $12.92d^{-1}$, respectively. Moreover, during or after red tides dominated by the phototrophic dinoflagellates Prorocentrum donghaiense, Ceratium furca, and Alexandrium fraterculus, which formed serial red tides prior to the occurrence of C. polykrikoides red tides, the HTDs Gyrodinium spp., Polykrikos spp., and Gyrodinium spp., respectively were abundant. The maximum calculated grazing coefficients attributable to dominant heterotrophic protists on co-occurring P. donghaiense, C. furca, and A. fraterculus were 13.12, 4.13, and $2.00d^{-1}$, respectively. Thus, heterotrophic protists may sometimes have considerable potential grazing impacts on populations of these four red tide species in the study area.