• Title/Summary/Keyword: Earth Pressure Cell

Search Result 54, Processing Time 0.029 seconds

Effect of Annealing Process Pressure Over Atmospheric Pressure on Cu2ZnSn(S,Se)4 Thin Film Growth (대기압 이상의 열처리 공정압력이 Cu2ZnSn(S,Se)4(CZTSSe) 박막 성장에 미치는 영향)

  • Lee, Byeong Hoon;Yoo, Hyesun;Jang, Jun Sung;Lee, InJae;Kim, Jihun;Jo, Eunae;Kim, Jin Hyeok
    • Korean Journal of Materials Research
    • /
    • v.29 no.9
    • /
    • pp.553-558
    • /
    • 2019
  • $Cu_2ZnSn(S,Se)_4(CZTSSe)$ thin film solar cells areone of the most promising candidates for photovoltaic devices due to their earth-abundant composition, high absorption coefficient and appropriate band gap. The sputtering process is the main challenge to achieving high efficiency of CZTSSe solar cells for industrialization. In this study, we fabricated CZTSSe absorbers on Mo coated soda lime glass using different pressures during the annealing process. As an environmental strategy, the annealing process is performed with S and Se powder, without any toxic $H_2Se$ and/or $H_2S$ gases. Because CZTSSe thin films have a very narrow stable phase region, it is important to control the condition of the annealing process to achieve high efficiency of the solar cell. To identify the effect of process pressure during the sulfo-selenization, we experiment with varying initial pressure from 600 Torr to 800 Torr. We fabricate a CZTSSe thin film solar cell with 8.24 % efficiency, with 435 mV for open circuit voltage($V_{OC}$) and $36.98mA/cm^2$ for short circuit current density($J_{SC}$), under a highest process pressure of 800 Torr.

A Compression Study on a Synthetic Talc (합성 활석에 대한 압축 연구)

  • Kim, Young-Ho;Kim, Soon-Oh
    • Journal of the Mineralogical Society of Korea
    • /
    • v.27 no.4
    • /
    • pp.283-291
    • /
    • 2014
  • Talc ($Mg_3Si_4O_{10}(OH)_2$), one of sheet silicates, is soft and has been widely used in industry. Powdered talc specimen was synthesized at the pressure of 200 MPa and temperature of $600^{\circ}C$ using external heated hydrothermal high pressure apparatus. High pressure angular dispersive X-ray diffraction (ADXRD) mode experiments were performed at the Pohang Light Source (PLS) using the symmetrical diamond anvil cell (SDAC). Compression pressure was loaded up to 11.06 GPa at room temperature. This synthetic talc shows no phase transition(s) within the present pressure limit. Based on ADXRD data, bulk modulus of talc was calculated to be 72.4 GPa using Birch-Muranghan equation of state (EOS). This value is lower than that of natural talc determined previously.

Diversity of Deep-sea Piezophiles and Their Molecular Adaptations to High-pressure Environment

  • Kato, Chiaki;Sato, Takako;Tamegai, Hideyuki;Nakasone, Kaoru
    • Proceedings of the Microbiological Society of Korea Conference
    • /
    • 2007.05a
    • /
    • pp.80-82
    • /
    • 2007
  • We have isolated numerous cold deep-sea adapted microorganisms (piezophilic, formerly referred to as "barophilic" bacteria) using deep-sea research submersibles. Many of the isolates are novel psychrophilic bacteria, and we have identified several new piezophilic species, i.e., Photobacterium profundum, Shewanella violacea, Moritella japonica, Moritella yayanosii, Psychromonas kaikoi, and Colwellia piezophila. These piezophiles are involving to five genera in gamma-Proteobacteria subgroup and produce significant amounts of unsaturated fatty acids in their cell membrane fractions to maintain the membrane fluidity in cold and high-pressure environments. Piezophilic microorganisms have been identified in many deep-sea bottoms of many of the world oceans. Therefore, these microbes are well distributed on our planet. One of the isolated deep-sea piezophiles, Shewanella violacea strain DSS12 is a psychrophilic, moderately piezophilic bacterium from a sediment sample collected at the Ryukyu Trench (depth: 5,110 m), which grows optimally at 30 MPa and $8^{\circ}C$ but also grows at atmospheric pressure (0.1 MPa) and $8^{\circ}C$. We have examined this strain to elucidate the molecular basis for gene regulation at different pressure conditions because this strain is useful as a model bacterium for comparing the various features of bacterial physiology under pressure conditions. In addition, we completed the sequencing of the entire genome of this piezophilic bacterium and we expect that many biotechnologically useful genes will be identified from the genome information.

  • PDF

High Pressure X-ray Diffraction Study of LiFePO4/C-olivine-like Phase (LiFePO4/C-유사 감람석 결정구조에 대한 고압 X-선회절연구)

  • Hwang, Gil-Chan;Kim, Young-Ho
    • Journal of the Mineralogical Society of Korea
    • /
    • v.26 no.1
    • /
    • pp.35-44
    • /
    • 2013
  • Synthetic carbon-coated olivine-like structured lithium iron phosphate ($Li^+Fe^{2+}(PO_4)^{3-}/C$) powder composites were compressed up to 35.0 GPa in the symmetrical diamond anvil cell at room temperature. Bulk modulus of $LiFePO_4/C$ was determined to be $130.1{\pm}10.3$ GPa. New peak appears at the d-spacing of 3.386 ${\AA}$ above 18 GPa, and another new one at 2.854 ${\AA}$ around 35 GPa. The crystallographic symmetry of the sample (i.e. orthorhombic) is apparently retained up to 35 GPa as no clear evidence for the phase transition into spinel structure has been observed. The pressure-induced volume change in the M1 site ($Li^+O_6$) is more significant than those in M2($Fe^{2+}O_6$) and $PO_4$ tetrahedral sites.

A Study on the Arching Effect due to Embankment Piles (성토지지말뚝에 의한 아칭효과 연구)

  • Lee, Seung-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.7
    • /
    • pp.375-381
    • /
    • 2017
  • A full-scale field test was conducted to investigate the arching effect of an embankment pile. The arching effect calculated from the test results was compared with theoretical values. Measurements obtained from a load cell and an earth pressure cell during the field test reflected the arching effect of the embankment pile well. The arching effect measured by load cells for an embankment height of 3m or less was smaller than the theoretical value with the assumption of plain strain.The measured effect for a height of 4 m or more was larger than the theoretical value. In contrast to the consistent decrease of the theoretical arching effect, the arching effect obtained from the field test shows continually increasing trends. The arching effects calculated from the earth pressure cells were greater than those from the theory under the plain strain assumption, but the trend was similar to the theoretical one. The arching effects measured by the earth pressure cells an embankment heights of 2, 3, 4, 5, and 6 m were 1.05, 1.23, 1.29, 1.28, and 1.29 times greater than those from the theory under the assumption of plain strain. The arching effects from the field test were much greater than those from the theory under the installation of a pile grid.

Effect of Compaction Method on Induced Earth Pressure Using Dynamic Compaction Roller (진동롤러에 의한 다짐방법이 인접구조물의 다짐토압에 미치는 영향)

  • Roh, Han-Sung
    • International Journal of Highway Engineering
    • /
    • v.3 no.4 s.10
    • /
    • pp.127-136
    • /
    • 2001
  • To increase the structural integrity of concrete box culvert good compaction by the dynamic compaction roller with bi9 capacity is as effective as good backfill materials. It is needed for effective compaction that a compaction roller closes to concrete structure with high frequency. However structural distress of the culvert could be occur due to the excessive earth pressure by great dynamic compaction load. To investigate the characteristics of Induced stress by compaction, a box culvert was constructed with changing cushion materials and compaction methods. Two types of cushion material such as tire rubber chip and EPS(Expanded Polystyrene) were used as cushion panels and they are set on the culverts before backfill construction. Laboratory test result of cushion material says that the value of dynamic elastic modulus of rubber is lesser than that of EPS. On the other hand, material damping of rubber material is greater than that of EPS. In most case, dynamic compaction rollers with 10.5 ton weights were used and vibration frequency was applied 30Hz for the great compaction energy. This paper presents the main results on the characteristics of dynamic earth pressures during compaction. The amounts of induced dynamic pressures$(\Delta\sigma\;h)$ by compaction are affected with construction condition such as compaction frequency, depth of pressure cell, distance between roller and the wall of culvert and roller direction. Based on the measured values dynamic lateral pressure on the culverts, it could be said that orthogonal direction of roller to the length of culvert is more effective to compaction efficiency than parallel direction.

  • PDF

Phase Transition Studies on TiO2 anatase under High Pressure (TiO2 아나타제에 대한 고압 상변이 연구)

  • Hwang, Gil-Chan;Kim, Young-Ho
    • Journal of the Mineralogical Society of Korea
    • /
    • v.25 no.2
    • /
    • pp.77-84
    • /
    • 2012
  • Anatase, one of the $TiO_2$ polymorphs, is known to show different phase transition paths depending on its crystalline and shape. Particle size of 15~25 nm anatase has been subjected to high-pressure Raman spectroscopy and X-ray diffraction studies using a diamond anvil cell. We observe that the starting sample transforms to an amorphous phase above approx. 20 GPa, which is retained upon pressure release to ambient condition. This is in contrast to previously established transition to baddeleyite phase and we suspect difference in the particle distribution state trigger phase instability of nanoparticles and hence amorphization.

A Phase Transformation Study on Amorphous Diopside ($CaMgSi_2O_6$) (비정질 투휘석($CaMgSi_2O_6$)에 대한 상변이 연구)

  • 김영호
    • Journal of the Mineralogical Society of Korea
    • /
    • v.16 no.2
    • /
    • pp.161-169
    • /
    • 2003
  • A phase transformation study on a synthetic amorphous diopside, $(Ca,Mg)SiO_3$has been carried out up to ∼30 GPa, and ∼$1000^{\circ}C$ using a diamond anvil cell and YAG laser heating system, respectively. A starting amorphous material shows a direct transition to cubic $(Ca,Mg)SiO_3$perovskite at high pressure, which contradicts to the crystalline diopside phase transformation sequence disproportionating into mixtures of the orthorhombic$ MgSiO_3$perovskite and the cubic $CaSiO_3$perovskite phases. This discrepancy might be due to the different starting materials as well as the temperature variations at each specific experiment performed. The present phase transfor mation sequence would modify the mineralogical assemblage in the Earth transition region and the lower mantle depending upon the pressure, temperature and the oxygen partial pressure.

A Study on Anisotropic Compression Behavior of Illite (일라이트의 비등방적 압축특성 연구)

  • Yun, Seohee;Lee, Yongjae
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.33 no.1
    • /
    • pp.11-18
    • /
    • 2020
  • High-pressure synchrotron X-ray powder diffraction experiments were performed on natural illite (K0.65Al2(Al0.65Si3.35)O10(OH)2) using diamond anvil cell (DAC) under two different pressure transmitting media (PTM), i.e., water and ME41 (methanol:ethanol = 4:1 by volume). When using water as PTM, occasional heating was applied up to about 250℃ while reaching pressure up to 2.7 GPa in order to promote both hydrostatic conditions and intercalation of water molecules into the layer. When using ME41, pressure was reached up to 6.9 GPa at room temperature. Under these conditions, illite did not show any expansion of interlayer distance or phase transitions. Pressure-volume data were used to derive bulk moduli (K0) of 45(3) GPa under water and 51(3) GPa under ME41 PTM. indicating no difference in compressibility within the analytical error. Linear compressibilities were then calculated to be βa = 0.0025, βb = 0.0029, βc = 0.0144 under ME41 PTM showing the c-axis is ca. six times more compressible than a- and b-axes. These elastic behaviors of illite were compared to muscovite, one of its structural analogues.

Deformation Characteristics of Steel Plate Cellular Bulkhead (강판셀 호안의 변형특성)

  • Jeong Wook Kang
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.9 no.4
    • /
    • pp.165-175
    • /
    • 1997
  • This study qualitatively reviewed effect of the height of loading and the ratio of penetration on. the characteristics of deformation of cellular bulkhead by performing a model test of embedded steel plate cellular bulkhead which had different loading height and penetration ratio. And we also examined the effect of the loading height upon the shear behavior by performing two-dimensional model test making use of aluminum rods for a filler. Besides, test results and theoretical values based on Hansen's earth pressure theory were compared and reviewed. In consequence, it was ascertained that the yield moment of cells depended on the height of loading and the ratio of penetration, and the slip surface was located on the lower area of a cell interior according as the height of loading becomes lower. The theoretical consideration which was based on the theory of earth pressure proposed by Hansen revealed that the test results accorded with the theoretical values to some degree, and the same results were derived about the location change of the slip surface.

  • PDF