• Title/Summary/Keyword: Earth's magnetic field

Search Result 163, Processing Time 0.027 seconds

Design and Realization of Phase Sensitive Detector Circuitry of Two-Channel Ring-Core Flux-Gate Compass (2-체널 링-코어 플럭스-게이트 콤파스의 위상검출 회로 설계와 구현에 관한 연구)

  • Yim, Jeong-Bin
    • Journal of Navigation and Port Research
    • /
    • v.26 no.1
    • /
    • pp.127-136
    • /
    • 2002
  • This paper Presents a discussion on the design and realization for the Phase Sensitive Defector (PSD) circuitry of Flu$\chi$-gate Compass that gives direction information to the Directional Frequency Analysis and Recording (DIFAR) Sonobuoy in Air Anti-Submarine Warfare. PSD circuitry is realized with Twin-T RC networked active band-pass filter. Results of a performance test the PSD circuitry shows that the effectiveness of band-pass filtering of desired $2F_0$ second harmonic signal, which is Pro- portional to the direction of earth's magnetic field. This resulted in the extraction of direction information.

Development of Electronic Compass using Magnetic Sensors (자기 센서를 이용한 전자 컴퍼스 개발)

  • Hong, Chang-Hyun;Kim, Young-Chul;Chong, Kil-To
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.2
    • /
    • pp.118-124
    • /
    • 2008
  • Recently fishing industry is interested in efficiency and automation to acquire the international competitive power of national fishing industry. As an automation device of fishing boat, there are electric compasses using GPS and terrestrial magnetic sensor. Electric compass can be minimum size, high effectiveness with keeping the characteristic of a magnetic compass. This can be used a heading angle sensor to construct auto-navigation system in a small size ship. This paper develop electronic compass system that has serial output signal in NMEA 0183 and demonstrates the possibility of the electronics compass in navigation system for a small sized ship.

A Study on Electrified Railway Traction System Impedance Calculation (전철선로 임피던스계산에 관한 연구)

  • Lee, Chon-Bae;Kim, Wang-Gon;Lee, Jong-Woo
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.1407-1412
    • /
    • 2004
  • Impedance calculations of electric railway traction systems is essential to define characteristics and to design it. The self impedance is defined voltage drop rate per unit length, the mutual impedance is represented as a voltage induced to transmission line from transmission line. The self and the mutual impedance are influenced by ground return currents. The earth is considered as a semi-infinitely extended non-ideal conductor. The current of transmission line produces earth current induced magnetically and it flow through a path having minimum impedance. Carson proposed the impedance calculation formula using wave equations and magnetic field equations. Though the formula have an improper equation, that is still used as a standard impedance calculation method. This paper introduced an impedance calculation method that the complex depth of earth return method assumes that the current in conductor returns through an imagined earth depth path located directly under original conductor at a depth of. In this paper, we showed that this proposed method has a closed form and is easier than Carson's.

  • PDF

Analsis of Preponderant Wear of Earth Brush for an Electrical Multiple Units(EMUs) (전동차용 접지브러쉬 편중마모에 대한 해석)

  • Park, Byung-Sup;Ku, Jung-Su;Kim, Gil-Dong
    • Proceedings of the KSR Conference
    • /
    • 2005.11a
    • /
    • pp.356-361
    • /
    • 2005
  • Earth brush for electrical multiple units(EMUs) is a device through which the current of the EMU load's consumed power fed from the DC 1,500V overhead line (or from the AC 25.000V catenary) flows via axle to the rail(ground) and which prevents the electric corrosion of the axle bearings by preventing the current flow to the axle bearings caused by electric potential from the magnetic field when the bearings rotate together with the earthing function when a thunderbolt falls or a surge comes. The earth brush wear rates among cars, however, shows quite differences when the earth brushes after being separated from the holders are measured with vernier callipers every 6 months of maintenance period. Main causes of the earth brush wear are divided as mechanical, electric arc and electrical one, and the factors can be running speed, current, harmonics, connection state. spring tension, earth brush material, lubricant and so on. but only the earth brushes of the motor(M1) car show the highest wear rate and moreover maintenance difficulty occurs because of the wear rate differences among e earth brushes in one holder. The reason for these preponderant wear comes from the design concept of making preponderant current flow to some particular earth brushes and moreover the heat generated by the harmonics when the inverter starts to operate accelerate the wear. By defining these causes through experiments. I hope that the found results would be helpful for the future EMU design, safety, economy and maintenance.

  • PDF

Polarization characteristics of magnetotelluric fields in the Korean peninsula (한반도에서 관측된 MT(Magnetotelluric)장의 분극 특성)

  • Lee, Choon-Ki;Kwon, Byung-Doo;Lee, Heui-Soon
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.35-38
    • /
    • 2006
  • The polarized direction of MT field was analyzed using the MT dataset measured in the Korean Peninsula. The atmospherics above 1 Hz has a large dispersion of polarized direction, whereas the Schumann resonance near 8 Hz exhibits the predominant direction ranging from $N20^{\circ}W$ to NS. The electromagnetic field variations below 0.1 Hz, induced by magnetic pulsations, show a strongly polarized direction of nearly NS. It results from the regular pulsations since the regular pulsation fields, driven by Alfv.n's wave in the magnetosphere, has a worldwide predominant direction of NS. The MT field strongly polarized along NS direction causes the poorly behaved XY impedance.

  • PDF

A Localized Secular Variation Model of the Geomagnetic Field Over Northeast Asia Region between 1997 to 2011 (지역화된 동북아시아지역의 지구자기장 영년변화 모델: 1997-2011)

  • Kim, Hyung Rae
    • Economic and Environmental Geology
    • /
    • v.48 no.1
    • /
    • pp.51-63
    • /
    • 2015
  • I produced a secular variation model of geomagnetic field by using the magnetic component data from four geomagnetic observatories located in Northeast Asia during the years between 1997 and 2011. The Earth's magnetic field varies with time and location due to the dynamics of fluid outer core and the magnetic observatories on the surface measure in time series. To adequately represent the magnetic field or secular variations of the Earth, a spatio-temporal model is required. In making a global model, satellite observations as well as limited observatory data are necessary to cover the regions and time intervals. However, you need a considerable work and time to process a huge amount of the dataset with complicated signal separation procedures. When you update the model, the same amount of chores is demanded. Besides, the global model might be affected by the measurement errors of each observatory that are biased and the processing errors in satellite data so that the accuracy of the model would be degraded. In this study, as considered these problems, I introduced a localized method in modeling secular variation of the Earth's magnetic field over Northeast Asia region. Secular variation data from three Japanese observatories and one Chinese observatory that are all in the INTERMAGNET are implemented in the model valid between 1997 to 2011 with the interval of 6 months. With the resulting model, I compared with the global model called CHAOS-4, which includes the main, secular variation and secular acceleration models between 1997 to 2013 by using the three satellites' databases and INTERMAGNET observatory data. Also, the geomagnetic 'jerk' which is known as a sudden change in the time derivatives of the main field of the Earth, was discussed from the localized secular acceleration coefficients derived from spline models.

A Study on the Application of Drone Based Aeromagnetic Survey System to Iron Mine Site (드론 기반 항공자력탐사 시스템을 이용한 철광산 탐사 적용성 연구)

  • Min, Dongmin;Oh, Seokhoon
    • Journal of the Korean earth science society
    • /
    • v.38 no.4
    • /
    • pp.251-262
    • /
    • 2017
  • The system of magnetic exploration with a drone flight was constructed and applied to the iron mine site. The magnetic probe system installed on the drone used a sensor as Bartington's fluxgate type magnetometer, Mag639 and the A/D converter to collect magnetic intensity values on the tablet PC. The drone flight control module is a highly expandable Pixhawk with allowing 15 minutes of flight by loading 3kg. Experiments on the magnetic field interference range were performed to remove the erroneous effect from the drone with applying RTK GPS to obtain the magnetic intensity value at the accurate position. The accurate location information enabled to obtain the gradient measurement of magnetic field by measuring twice at different altitudes. Also, by using the terrain information, we could eliminate the terrain effect by setting the flight path to fly along the terrain. These results are in line with the field experiments using the nuclear proton magnetometer G-858 of Geometrics Co., Ltd, which adds to the reliability of the drone based aeromagnetic survey system we constructed.

Statistical properties of the fast flows accompanied by dipolarization in the near-Earth tail

  • Kim, Hyun-Sook;Lee, Dae-Young;Ahn, Byung-Ho
    • Bulletin of the Korean Space Science Society
    • /
    • 2010.04a
    • /
    • pp.40.4-41
    • /
    • 2010
  • Using magnetic field and plasma moment data obtained by THEMIS satellites(A, D, and E), we selected 203 fast flow events accompanied by dipolarization in the near-Earth region( X(GSM) = -7 ~ -12 RE) and statistically examined their properties. It was found that most of the fast flows show the maximum velocity between 1 minute before dipolarization onset and 2 minutes after onset and proceed earthward and duskward. We also found that only the flows with low velocity of less than 400 km/s are observed at X > -8 RE, while the high velocity flows(as well as low velocity flows) are observed at the further tailward region(X < -8 RE). And most of the tailward flows are slow regardless of distance at X(GSM) = -7 ~ -12 RE. On the other hand, if we consider the fast flow as a bubble (Pontius and Wolf, 1990), the entropy parameter, PV5/3 is an important factor to describe the plasma sheet dynamics. Thus we investigated the relationship between the flow velocity and the amount of change in PV5/3 before and after dipolarization onset and found out that the dipolarizations with more depleted entropy parameter tend to show higher flow velocity. Also we examined how the magnetic field at geosynchronous orbit responds to the fast flow accompanied by dipolarization in the near-earth plasma sheet, using the measurements from GOES 11 and 12 statellites. We found that most of the fast flows do not reach geosynchronous orbit as suggested by Ohtani et al. (2006).

  • PDF

DIFFUSIVE SHOCK ACCELERATION WITH MAGNETIC FIELD AMPLIFICATION AND ALFVÉNIC DRIFT

  • Kang, Hyesung
    • Journal of The Korean Astronomical Society
    • /
    • v.45 no.5
    • /
    • pp.127-138
    • /
    • 2012
  • We explore how wave-particle interactions affect diffusive shock acceleration (DSA) at astrophysical shocks by performing time-dependent kinetic simulations, in which phenomenological models for magnetic field amplification (MFA), Alfv$\acute{e}$nic drift, thermal leakage injection, Bohm-like diffusion, and a free escape boundary are implemented. If the injection fraction of cosmic-ray (CR) particles is ${\xi}$ > $2{\times}10^{-4}$, for the shock parameters relevant for young supernova remnants, DSA is efficient enough to develop a significant shock precursor due to CR feedback, and magnetic field can be amplified up to a factor of 20 via CR streaming instability in the upstream region. If scattering centers drift with Alfv$\acute{e}$n speed in the amplified magnetic field, the CR energy spectrum can be steepened significantly and the acceleration efficiency is reduced. Nonlinear DSA with self-consistent MFA and Alfv$\acute{e}$nic drift predicts that the postshock CR pressure saturates roughly at ~10 % of the shock ram pressure for strong shocks with a sonic Mach number ranging $20{\leq}M_s{\leq}100$. Since the amplified magnetic field follows the flow modification in the precursor, the low energy end of the particle spectrum is softened much more than the high energy end. As a result, the concave curvature in the energy spectra does not disappear entirely even with the help of Alfv$\acute{e}$nic drift. For shocks with a moderate Alfv$\acute{e}$n Mach number ($M_A$ < 10), the accelerated CR spectrum can become as steep as $E^{-2.1}$ - $E^{-2.3}$, which is more consistent with the observed CR spectrum and gamma-ray photon spectrum of several young supernova remnants.

A New Correction Method for Ship's Viscous Magnetization Effect on Shipboard Three-component Magnetic Data Using a Total Field Magnetometer (총자력계를 이용한 선상 삼성분 자기 데이터의 선박 점성 자화 효과에 대한 새로운 보정 방법 연구)

  • Hanjin Choe;Nobukazu Seama
    • Geophysics and Geophysical Exploration
    • /
    • v.27 no.2
    • /
    • pp.119-128
    • /
    • 2024
  • Marine magnetic surveys provide a rapid and cost-effective method for pioneer geophysical survey for many purposes. Sea-surface magnetometers offer high accuracy but are limited to measuring the scalar total magnetic field and require dedicated cruise missions. Shipboard three-component magnetometers, on the other hand, can collect vector three components and applicable to any cruise missions. However, correcting for the ship's magnetic field, particularly viscous magnetization, still remains a challenge. This study proposes a new additional correction method for ship's viscous magnetization effect in vector data acquired by shipboard three-component magnetometer. This method utilizes magnetic data collected simultaneously with a sea-surface magnetometer providing total magnetic field measurements. Our method significantly reduces deviations between the two datasets, resulting in corrected vector anomalies with errors as low as 7-25 nT. These tiny errors are possibly caused by the vector magnetic anomaly and its related viscous magnetization. This method is expected to significantly improve the accuracy of shipborne magnetic surveys by providing corrected vector components. This will enhance magnetic interpretations and might be useful for understanding plate tectonics, geological structures, hydrothermal deposits, and more.