• Title/Summary/Keyword: Earth's Magnetic

Search Result 247, Processing Time 0.024 seconds

SPACE PHYSICS PACKAGE ON KAISTSAT-4 (과학위성 1호의 우주 플라즈마 관측 시스템)

  • HWANG JUNG-A;LEE JAE-JIN;LEE DAE-HEE;LEE JIN-GUN;KIM HEE-JUN;PARK JAE-HEUNG;MIN KYOUNG WOOK;SHIN YOUNG-HOON
    • Publications of The Korean Astronomical Society
    • /
    • v.15 no.spc2
    • /
    • pp.45-52
    • /
    • 2000
  • Four plasma instruments are currently under development for KAISTSAT-4 (K-4) which is scheduled for launch in 2002. They are the Solid-State Telescope, Electro-Static Analyzer, Langmuir Probe, and the Scientific Magnetometer, that will respectively allow in-situ detection of high energy and low energy components of auroral particles, ionospheric thermal electrons, and magnetic field disturbances. These instruments, together with the Far-ultraviolet IMaging Spectrograph, will provide micro-scale physics of Earth's polar ionosphere with detailed spectral information that has not been previously achieved with other space missions. In this paper, we review the concept of the four space plasma instruments as well as the anticipated results from the instruments.

  • PDF

Statistical characteristics of electron precipitation into the atmosphere

  • Park, Mi-Young;Lee, Dae-Young;Cho, Jung-Hee;Shin, Dae-Kyu;Lee, Eun-Hee
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.38 no.2
    • /
    • pp.94.2-94.2
    • /
    • 2013
  • We studied the precipitation of magnetospheric energetic electrons into the Earth's atmosphere during magnetic storm times using precipitating electron flux data from the MEPED on board the NOAA Polar Orbiting Environmental Satellites (POES) low.altitude satellite, NOAA-16. We identified a total of 84 storm events between 2001 and 2012 using SYM-H index. We have done a superposition of precipitating electron fluxes for each of three energy ranges (i.e., e1: > 30 keV, e2: > 100 keV, e3: > 300 keV) for the identified storm times. The results show that the fluxes start to increase before the main phase of storm for all energy ranges and reach a maximum level just before the time of SYM-H minimum value. The precipitation timescales are energy-dependent, being shorter for lower energy, ~4.67 hours for e1, ~7.93 hours for e2 and ~26.5 hours for e3. The precipitating fluxes decline during the recovery phase of the storms. We examined the L shell dependence of the precipitating electron flux during the main phase. We found that statistically the precipitation fluxes are dominantly seen at L of ~ 3-4 or higher. This L value roughly corresponds to the plasmapause location during the main phase. Thus the results imply that the electron precipitation mainly occurs outside of the plasmapause. In addition, we classified the storm events by their strength and examined the dependence of precipitation on storm intensity. We found that the electron precipitation occurs on a faster time scale and penetrate into inner L shell region for a stronger storm.

  • PDF

A Paleomagnetic Study of Cretaceous Rocks from the Euiseong Area (의성지역에 분포하는 백악기 지층에 대한 고지자기 연구)

  • Doh, Seong-Jae;Kim, Kwang-Ho
    • Economic and Environmental Geology
    • /
    • v.27 no.3
    • /
    • pp.263-279
    • /
    • 1994
  • Paleomagnetic and rock-magnetic data of Cretaceous sedimentary and volcanic rocks from the Euiseong area indicate that the stable components of remanence are carried by single and pseudo-single domain magnetite, with the exception of the Shinyangdong Formation which has been remagnetized. The Hayang Group, except for the remagnetized Shinyangdong Formation, yields the mean characteristic direction of $D/I=22.5^{\circ}/57.2^{\circ}$ (${\alpha}_{95}=4.6^{\circ}$, N=14 sites) and the pole position is $72.0^{\circ}N$, $206.4^{\circ}E$ ($dp/dm=4.9^{\circ}/6.7^{\circ}$). The Yucheon Group shows two polarities and the mean characteristic direction of $D/I=351.2^{\circ}/60.5^{\circ}$ (${\alpha}_{95}=11.2^{\circ}$, N= 19 sites) and the pole position is $81.3^{\circ}N$, $79.0^{\circ}E$ ($dp/dm=13.0^{\circ}/17.0^{\circ}$). The mean directions of both the Hayang and the Yucheon Groups are supported by the McElhinny's fold test at the 99% confidence level and that of the Yucheon Group by a reversal test at the 95% confidence level. A magnetostratigraphic correlation between polarities of the study formations and the Geomagnetic Time Scale indicates that the Hayang Group can be correlated to the Cretaceous Long Normal Superchron (CLNS), and the Yucheon Group to the boundary between the CLNS and the Polarity Chron 33R or later boundaries between normal and reverse polarities. Comparison of the paleopoles from this study with those from the surrounding areas both within the Gyeongsang basin and in the northeastern Asia indicates that the study area was not undergone significant tectonic rotations with respect to the other parts of the Gyeongsang basin and that the Korean Peninsula was the part of the single terrane of the northeastern Asia at least since the CLNS. The Yucheon Group can be divided into four sub-groups based on the paleomagnetic data, suggesting that there were at least four times of volcanic activities in the study area.

  • PDF

Aeromagnetic Pre-processing Software Based on Graphic User Interface, KMagLevellingTM (그래픽 사용자 인터페이스 기반 항공자력탐사 전처리 S/W, KMagLevellingTM)

  • Ko, Kwang-Beom;Jung, Sang-Won
    • Geophysics and Geophysical Exploration
    • /
    • v.17 no.3
    • /
    • pp.171-178
    • /
    • 2014
  • Aeromagnetic survey generally require much more pre-processing steps than that of common land survey due to several complex and cumbersome steps included in pre-processing stage. Therefore it is desirable to use specific processing tool especially based on graphic user interface. For this purpose, aeromagnetic pre-processing software based on graphic user interface under the Windows environment, called $KMagLevelling^{TM}$ was developed and briefly introduced. In an aspect of its user-friendliness and originality, three noticeable features of $KMagLevelling^{TM}$ are summarized as the following (1) function of representation and handling for large amount of aeromagnetic data set as a visualization in the form of flight-path (2) function of selective exclusion of unwanted data by using survey area information expressed as polygon, and (3) function of selective removal processing for the irregular flight-path data acquired within the entire survey area by implementing the segmentation of flight-path technique.

Geophysical Prospecting for Geothermal Resources at Northern Part of Kumseongsan, Euiseong (의성 금성산 북부지역의 지열자원 지구물리탐사)

  • Lee, Gidong;Han, Kihwan;Kim, Kibeom;Lee, Jongmoon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.7 no.6
    • /
    • pp.35-44
    • /
    • 2006
  • Various geophysical methods and geological survey were applied for prospecting of geothermal resources and the attitude of volcanic body at northern part of Kumseongsan, Euiseong. They include magnetic, self-potential, radioactive and resistivity methods, temperature logging near the earth's surface and geological survey. The results of this study are summarized as follows. Various geophysical anomalies is related to the geologically Cretaceous conduit. Anomalies of resistivity and temperature logging seem to be related to the geological structure and terrestrial heat. Small radioactive and self-potential anomalies seem to be associated with chemical character of rocks. The sedimentary rocks dip steeply toward the volcanic rocks, aquifuge. Ideal geological structure for bearing ground water and geothermal resources was founded in the study area. The study area and the adjacent two hot springs area consist of Cretaceous sedimentary and volcanic rocks, and have similar geology.

  • PDF

A Study on Estimating Geomagnetic Azimuth using LSTM (LSTM을 이용한 지자기 방위각 추정 기술 연구)

  • Oh, Jongtaek;Kim, Sunghoon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.6
    • /
    • pp.137-141
    • /
    • 2022
  • The method of estimating the azimuth by measuring the geomagnetism has been used for a very long time. However, there are many cases where an error occurs in the estimated azimuth due to disturbances in the earth's magnetic field due to metal structures inside and outside the room. Although many studies have been conducted to correct this, there is a limit to reducing the error. In this paper, we propose a method of estimating the azimuth by applying the measured geomagnetic sensor data to the neural network of the LSTM structure. Data preprocessing is very important for learning a neural network. In this paper, data is collected using the built-in acceleration sensor, gyro sensor, and geomagnetic sensor in the smartphone, and the geomagnetic sensor data is uniformly sampled using EKF. As a result, an average azimuth estimation error of 0.9 degrees was obtained using four hidden layers.

Application of Two-Dimensional Boundary Condition to Three-Dimensional Magnetotelluric Modeling (3차원 MT 탐사 모델링에서 2차원 경계조건의 적용)

  • Han, Nu-Ree;Nam, Myung-Jin;Kim, Hee-Joon;Lee, Tae-Jong;Song, Yoon-Ho;Suh, Jung-Hee
    • Geophysics and Geophysical Exploration
    • /
    • v.11 no.4
    • /
    • pp.318-325
    • /
    • 2008
  • Assigning an exact boundary condition is of great importance in three-dimensional (3D) magnetotelluric (MT) modeling, in which no source is considered in a computing domain. This paper presents a 3D MT modeling algorithm utilizing a Dirichlet condition for a 2D host. To compute boundary values for a model with a 2D host, we need to conduct additional 2D MT modeling. The 2D modeling consists of transverse magnetic and electric modes, which are determined from the relationship between the polarization of plane wave and the strike direction of the 2D structure. Since the 3D MT modeling algorithm solves Maxwell's equations for electric fields using the finite difference method with a staggered grid that defines electric fields along cell edges, electric fields are calculated at the same place in the 2D modeling. The algorithm developed in this study can produce reliable MT responses for a 3D model with a 2D host.

ACQUISITION OF THE FLIGHT INFORMATION USING THE KSR-3 MAGNETOMETER (KSR-3 탑재 자력계를 이용한 비행정보 획득 연구)

  • Kim, Sun-Mi;Jang, Min-Hwan;Lee, Dong-Hun;Han, Young-Seok;Kim, Jun;Hwang, Seung-Hyun;Lee, Eun-Seok;Lee, Sun-Min;Kim, Hyo-Jin;Lee, Su-Jin
    • Journal of Astronomy and Space Sciences
    • /
    • v.20 no.1
    • /
    • pp.29-42
    • /
    • 2003
  • The KSR-3 magnetometers consist of the fluxgate magnetometer (MAG/AIM) for acquiring the rocket flight attitude information, and the search-coil magnetometer (MAG/SIM) for the observation of the Earth's magnetic fluctuations. The position (latitude, longitude, and height) and flight condition (the transformation angle) of the rocket is measured after the data based on these two magnetometers are compared with IGRF The gap in the vector of magnetic field between the position of the launching point and an impact point is taken into account in data reduction. Angular variation of pitch, yaw, and roll can be researched when the data is applied to the coordinate system of the rocket.

Strategic Elements Project of Japan (일본의 원소전략 프로젝트)

  • Choi, Pan-Kyu
    • Journal of the Korean Magnetics Society
    • /
    • v.24 no.6
    • /
    • pp.197-201
    • /
    • 2014
  • As the importance of rare metal is increasing globally, Japan introduced the concept of Strategic Elements in 2004, and started Strategic Elements Project in 2007. The Goal of this project run by MEXT (Ministry of Education, Culture, Sports, Science and Technology) is to develop high-function materials and components that do not use rare or harmful elements by studying the role and characteristics of the elements that compose materials and components and decide their functions and characteristics. In September 2010, Japanese coast guard arrested a Chinese fishing boat near Senkaku Islands (Diaoyudao Islands by China), which escalated to the territory issue and eventually a big diplomatic and economic conflict. In order to put pressure on Japanese Government, China used an economic option, which is the ban of rare earth export to Japan. This incident doubled Japan's motivation to develop Strategic Elements and put more efforts into this Project. MEXT set the following three research areas in February 2012: Study of alternative materials using sufficient and harmless elements, Study of applications for the high-functions of Strategic Elements, Study of practical design for components using Strategic Elements. Through a course of gathering the opinion of professionals, MEXT settled down with the following 4 research and study areas for the Strategic Elements Project in June 2012. 1. Magnetic materials to replace Dy, Nd. 2. Catalyst/Battery materials to replace Pt, Rh/Li, Co. 3. Electronic materials to replace In, Ta. 4. Structural materials to replace Nb, Mo. This paper deals with the first area and reviews the results of the research and study as of now.

Demand Surveys for Big Research Facilities and Equipments to Advance National S&T Research Infrastructure (과학기술 하부구조 선진화를 위한 대형 연구장비의 수요 조사)

  • 권용수;민철구
    • Proceedings of the Technology Innovation Conference
    • /
    • 1997.12a
    • /
    • pp.159-176
    • /
    • 1997
  • This paper deals with demand surveys for big science and technology research facilities and equipments to advance national S'||'&'||'T research infrastructure. We perform surveys thrice based on applied Delphi method on the future demand of big S'||'&'||'T research facilities and equipments among Korean scientists and engineers. We employ the concept of big S'||'&'||'T research facilities and equipments as follows: \circled1 The operating size of it is equivalent to that of an institute or research center, and/or \circled2 The users in various disciplines are many, and/or \circled3 The application areas or spill-over effects are large, and/or \circled4 The scale and scope of research objects is equivalent to that of mega science area such as earth.oceanography.space, and/or \circled5 The expenses for installing and operating it are to be supported by government, and/or \circled5 The facilities are expected as necessary for international joint research, and/or \circled7 It is necessary for promoting creative basic science and developing creative technology. We ask the respondents to answer the following questionnaire: - How to prioritize the equipments according to the degree of importance\ulcorner $\square$ Promotion of basic science and mega science, the development of the technologies to enhance the public welfare, the competitiveness of industrial technologies, the job creation for the S'||'&'||'T personnel, and international cooperation. - Who should be in charge of acquisition and operation of the equipments\ulcorner $\square$ Industry, Government Research Institutes, Academy, ERC and SRC. - When shall we acquire the equipment\ulcorner $\square$ Within 2000, 2002, 2007, 2012, and 2017. - How shall we acquire the equipments\ulcorner $\square$ International Joint Development, Domestic Development, Acquisition from Overseas, - How much will the equipment generate spill-over effects to national competitiveness\ulcorner $\square$ Promotion of basic science, contribution to the economy, supply of S'||'&'||'T personnel, and international cooperation. We suggest the following equipments as prioritized candidates after consulting the officers from MOST, MOE, MIC, MOEN and experts from KBSI and STEPI:(table omitted) where, #1, Korea Advanced Liquid Metal Reactor, #2. 800 MHz Superconduction Fourier-Transform Nuclear Magnetic Resonance Spectrometer, #3. Ion Accelerator, #4. Seismic Test Facility, #5. Transonic Wind Tunnel, #6. Radio Telescope for Very Long Baseline Interferometer, #7. 3000t Universal(or Large Structure) Testing Machine, #8. Compost Facility or Plasma Pyrolysis Facility.

  • PDF