• Title/Summary/Keyword: Early-Age Concrete

Search Result 584, Processing Time 0.033 seconds

A Study on Survey of Carbonation for Sound, Cracked, and Joint Concrete in RC Column in Metropolitan City (국내 도심지 콘크리트 교각 취약부의 탄산화 조사에 대한 연구)

  • Kwon, Seung Jun;Park, Sang Sun;Nam, Sang Hyuk;Cho, Ho Jin
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.3
    • /
    • pp.116-122
    • /
    • 2007
  • The concrete structures in Metropolitan city are usually exposed to carbonation and corrosion of embedded steel occurs due to the carbonation. In inspection and diagnosis of concrete structures, carbonation depth in sound concrete is mainly evaluated and service life for concrete structure is predicted based on the result. Generally, however, mass concrete structures such as columns have construction joint for suitable placing and also have cracks in early-age. In this study, carbonation depth in RC columns used for 20 years in metropolitan city is evaluated and also analyzed by considering the local conditions like sound, cracked, and joint area. The carbonation depth in cracked and joint area is more rapid than that in sound area, and it is thought to be more desirable to consider this effect in concrete structures with small cover depth. Furthermore, the technique for carbonation prediction in cracked concrete is derived in terms of crack width and the results from this technique are verified by comparing those from previous research.

Relation Between Shrinkage and Humidity on Lightweight Concrete and Normal Concrete by Water-Cement Ratio (물-시멘트비에 따른 경량콘크리트 및 일반콘크리트의 수축과 습도와의 관계)

  • Lee, Chang Soo;Park, Jong Hyok;Jung, Bong Jo;Choi, Young Jun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.4A
    • /
    • pp.385-393
    • /
    • 2009
  • This study grasped the relationship between relative humidity in concrete and concrete shrinkage followed by pre-absorbed water of porous lightweight aggregates through measurements of concrete shrinkage and humidity and comparisons with established research results. It was showed that shrinkage reduction effect of lightweight concrete is 36% at 7 days early ages and 25% at 180 days long-term ages when water-binder ratio is 0.3. It also showed that shrinkage reduction effect is 19% at 7 days and 16% at 180 days when water-binder ratio is 0.4 and 37%, 32% when water-binder ratio is 0.5. The moisture supply effect of lightweight aggregates was remarkable at early age within 7~10 days irrespective of water-binder ratio. In case of waterbinder ratio is 0.3, the relationship between shrinkage and internal humidity of concrete has been underestimated regardless of applied existing model type and in case of water-binder ratio is 0.4, 0.5, measurement values are relatively similar with existing model equations. Finally this study did regression analyses about the relation among the humidity change and the shrinkage strain as a high-degree polynomial and derived parameters that can connect moisture movement analysis with differential shrinkage analysis in case of considering relative humidity at the time by moisture movement analysis of concrete.

Microstructural modelling of the elastic properties of tricalcium silicate pastes at early ages

  • Do, Huy Q.;Bishnoi, Shashank;Scrivener, Karen L.
    • Computers and Concrete
    • /
    • v.16 no.1
    • /
    • pp.125-140
    • /
    • 2015
  • This paper describes the numerical calculation of elastic properties of a simulated microstructure of cement paste from very early age, when most previous models fail to give accurate results. The development of elastic properties of tricalcium silicate pastes was calculated by discretising a numerical resolution-free 3D vector microstructure to a regular cubic mesh. Due to the connections formed in the microstructure as an artefact of the meshing procedure, the simulated elastic moduli were found to be higher than expected. Furthermore, the percolation of the solids was found to occur even before hydration started. A procedure to remove these artefacts, on the basis of the information available in the vector microstructures was developed. After this correction, a better agreement of the experimental results with calculations was obtained between 20% and 40% hydration. However, percolation threshold was found to be delayed significantly. More realistic estimates of percolation threshold were obtained if either flocculation or a densification of calcium silicate hydrate with hydration was assumed.

Thermal Stress Analysis of the Heat Generation for Mass Concrete Considering Creep Effect (크리이프를 고려한 매스콘크리트의 수화열에 대한 온도응력 해석)

  • Kim, Jin Keun;Lee, Jong Dae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.4
    • /
    • pp.771-781
    • /
    • 1994
  • The heat generation of cement causes the internal temperature rise and volume change at early age, particulary in massive concrete structures. As the results of the temperature rise and restraint conditions, the thermal stress may induce cracks in concrete. Therefore, the prediction of the thermal stress is very important in the design and construction in order to control the cracks developed in mass concrete. In case of young concrete, creep effect by the temperature load is larger than that of old concrete. Thus, the effect of creep must be considered for checking the cracks, serviceability, durability and leakage. This paper is concentrated on the development of a finite element program which is capable of simulating the temperature history and the thermal stress considering creep and the modified elastic modulus due to inner temperature change and maturity. The analytical results in the inner parts highest important to control cracks are in good agreement with experimental data. Therefore this study may provide available method to control the cracks.

  • PDF

An Experimental Study on the Properties of Compressive Strength of Fly Ash Replaced Antiwash out Underwater Concrete Considering Marine Environment (해양환경을 고려한 플라이애쉬${\cdot}$수중 불분리 콘크리트의 압축강도에 관한 실험적 연구)

  • Kwon, Joong-Hyen;Jung, Hee-Hyo;Moon, Je-Kil
    • Magazine of the Korea Concrete Institute
    • /
    • v.11 no.2
    • /
    • pp.231-239
    • /
    • 1999
  • When the concrete is cast at the sea, there are lots of restrictions in the working process being different from in land, and the concrete is suffered from the physical and chemical action in terms of marine environment. The compressive strength was measured after antiwash out underwater concrete mixed with fly ash had been cast and cured in order to produce the endurable high performance concrete, and then its characteristic was discussed by comparing one cured in air with in fresh water, and the effect of fly ash usage under the properly controled sea water temperature of $15{\pm}3^{\circ}C$ was also covered. The present work showed that the proper usage of fly ash was obtained at the condition of around 10% of substituted binder weight under the structure required the early age strength, and at the condition of over 40% if considering its durability and economy.

The Effect of Replacement Ratio of Mineral Admixtures and Curing Condition on Compressive Strength of Hot Weather Concrete (혼화재 치환율 및 양생조건이 서중콘크리트의 압축강도에 미치는 영향)

  • Kong, Tae-Woong;Lee, Soo-Hyung;Jang, Jae-Hwan;Lee, Han-Baek
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.629-632
    • /
    • 2008
  • As concrete is a material which is subject to wide quality fluctuations by temperature, grip of seasonal feature and maintenance of ambient temperature and humidity to secure the quality required after casting concrete are able to keep away from harmful effects. In case of summer, a high temperature has caused rapid hydration reaction of cement in early age, which has caused to decrease strength by autogenous shrinkage. Therefore we need to consider a countermeasure for decrease in the hydration heat of hot-weather concrete, according to minimize water and cement content and use mineral admixtures In this experimental research, the compressive strength development for replacement ratio of mineral admixtures, curing temperature and methods of concrete was investigated to confirm the effects of mixture design and curing condition on compressive strength of concrete.

  • PDF

Effect of temperature and moisture on curling of early age concrete slabs (재령 초기 콘크리트 슬래브의 컬링에 미치는 온도와 수분의 영향)

  • Sun, Ren-Juan;Nam, Young-Kug;Hong, Seung-Ho;Jeong, Jin-Hoon
    • International Journal of Highway Engineering
    • /
    • v.10 no.1
    • /
    • pp.105-115
    • /
    • 2008
  • It is known that the long-term behavior and performance of jointed concrete pavement due to slab curling are affected by the environmental factors such as temperature, moisture, and so on. However, any relationships between the curling and its factors have not been defined clearly yet because of insufficient detailed investigation. The temperature, relative humidity, strain, vertical displacement of a concrete slab, and horizontal movement of its transverse joints were investigated by various sensors and devices instrumented in the slab of a concrete pavement section constructed for this study. The constraint of the curling by joint stiffness was investigated in addition to effect of the temperature and moisture on the early aged concrete slab by analyzing the field data measured for approximately 4days from concrete placement. The curling of the concrete slab showed 24hour cycles mainly because of the temperature effect, and the upward curling gradually increased because of the long-term effect of drying shrinkage of the concrete. The magnitude and variation of the curling were significantly affected by the joint stiffness which is comprised of aggregate interlocking and other factors. The effect of the variation of the seasonal joint stiffness varying with the temperature and long-term drying shrinkage on the slab curling will be investigated as a further study.

  • PDF

Compressive Strength Properties of Steam-cured High Volume GGBFS Cement Concrete (증기양생한 고로슬래그 다량치환 시멘트 콘크리트의 압축강도 특성)

  • Hong, Seong-Hyun;Kim, Hyung-Suk;Choi, Seul-Woo;Lee, Kwang-Myong;Choi, Se-Jin
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.3 no.1
    • /
    • pp.1-6
    • /
    • 2015
  • Recently, lots of researches on concrete with high volume mineral admixture such as ground granulated blast furnace slag (GGBFS) have been carried out to reduce $CO_2$. It is known that the precast concrete has an advantage of high strength at early age due to steam curing, even if concrete has high replacement level of mineral admixture. However it demands the investigation of compressive strength properties according to steam curing regimens. In this study, concretes with water-binder ratio of 32, 35% and water content of 135, 150, $165kg/m^3$ were produced to investigate compressive strength properties of high volume (60% by mass) GGBFS cement concrete according to steam curing regimens. Then steam curing was implemented with the maximum temperature of 50, $60^{\circ}C$ and steaming time of 5, 6, 7 hours. From the test results, it was found that steam curing was effective to raise early strength of high volume GGBFS cement concrete, but 28 day compressive strengths of steam cured specimens were lower than those of water cured specimens. Thus, a further study would be needed for the optimum steam curing regimens to satisfy target demolded strength and specified strength for the application of high volume GGBFS cement concrete to precast concrete members.

Strength and Flowing Properties of Cementless Inorganic Complex Using Alkali Accelerator and Meta-kaolin (메타카올린과 알칼리 자극제를 사용한 무시멘트계 무기복합체의 유동특성 및 강도특성 연구)

  • Lee, Kang-Pil;Kim, Sung-Soo;Lee, Yun-Seong;Lee, Sang-Soo;Song, Ha-Young
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2010.05a
    • /
    • pp.89-90
    • /
    • 2010
  • As a result of physical characteristics of using meta-kaolin and alkali accelerator, it was found that higher curing temperature density is favorable to strength development at early age and the higher the age is, the higher, most of the compressive strength gets. Also, I was shown that more than atmospheric curing, steam curing was favorable for development of compressive strength. When the temperature of curing temperature was higher, most of the compressive strengths were higher. Thus, based on this study, it was understood that environmental-friendly chemically combined concrete using meta-kaolin and alkali accelerator can be utilized without using cement.

  • PDF

A study on optimum mixing derivation of the enviroment-friendly high performance geopolymer paste (친환경 고성능 지오폴리머 페이스트의 적정배합 도출에 관한 연구)

  • Lee, Kang-Pil;Do, Yun-seok;Lee, Sang-Soo;Song, Ha-Young
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2009.11a
    • /
    • pp.107-110
    • /
    • 2009
  • After inquiring into physical characteristics of using fly ash and alkali solution, it was found that higher pH density is favorable to strength development at early age and the higher the age is, the higher the compressive strength gets. Also, it was found that when there is more addition of activator, the compressive strength is higher. I was shown that more than atmospheric curing, steam curing was favorable for development of compressive strength. When the temperature of curing temperature was higher, most of the compressive strengths were higher. Thus, based on this study, it was understood that environmental-friendly chemically combined concrete using fly ash and alkali solution can be utilized without using cement.

  • PDF