• Title/Summary/Keyword: Early sowing

Search Result 213, Processing Time 0.028 seconds

A Study on the Variation of Soil Physical Properties on the water requirement, growth, and yield in the direct Sowing culture of rice (수도직파재배에서 토양의 물리성 변화가 용수량과 생육 수량에 미치는 영향에 관한 연구)

  • 김철수;김시원
    • Water for future
    • /
    • v.10 no.2
    • /
    • pp.81-90
    • /
    • 1977
  • The research is conducted to study the effect of the soil physical properties in the direct sowing culture on the water requirement, growth, and yield of rice with Early-Tongil at the experimental paddy field of the Sangju agri. and seri. junior college in Keyngbuk province from 6th May to 15th September in 1977. The experimental plots are designed with the four plots which are non-irrigated standard (plowing to 15cm), non-irrigated deep lowed (plowing to 25cm), irrigated standard (plowing to 15cm), and irrigated deep plowing plot (plowing to 25cm) and also each plot is repreated four times by the split plot design. The results obtained are summarized as follows: 1) The soil sample was ML to 10cm depth from ground surface and those from 10cm to 20cm depth and from 20cm to 30cm were CL. Each specific gravity was 2. 6, 2. 6 and 2. 7. 2) The weather during culturing period was the sane as the normal year of mean temperature. The precipitation was little and the distribution of it was disordered comparing to normal year but the heavy sunshine gave good effect on ripening. 3) Percolation loss was increased more at the non-irrigated plot than at the irrigated plot, and that of deep-plowed plot was increased more. 4) Grain yield per 10a. of non-irrigated deep plowed plot was 898kg, it was greated than others but there wa no significance. 5) A significant difference in the number of spikelets per panicle was found between nonirrigated plot and irrigated plot, and the number of spiklelets per panicle at the nonirrigated plot was more than that of the irrigated plot. But there was no significance in the other yield components-number of panicle, fertility abd ripening ratio-at the irrigated plot, ut weight of 100 grains was higher at non-irrigated plot. 6) Yield and growth at the deep plowed plot were higher than those of standard plowed plot.

  • PDF

Effect of Seed Dehydration and Temperature during Cold-Stratification on the Seed Quality of Panax ginseng C. A. Meyer (인삼 종자의 생리적 휴면타파기간 중 건조처리 및 저장온도가 종자 건전성에 미치는 영향)

  • Suh, Su Jeoung;Jang, In Bae;Yu, Jin;Jang, In Bok;Park, Hong Woo;Seo, Tae Cheol;Kweon, Ki Bum
    • Korean Journal of Medicinal Crop Science
    • /
    • v.25 no.4
    • /
    • pp.209-216
    • /
    • 2017
  • Background: Dehisced ginseng seeds need to be stored at cold temperatures for around 3 months to break their physiological dormancy, and thus, to aid in gemination. In the presence of high moisture in such an environment, seed spoilage and pre-germination may lower seed quality and productivity. To improve seed quality during cold-stratification, the effects of seed dehydration and temperature were tested. Methods and Results: In early December, dehisced ginseng seeds were dehydrated at 4 different levels and stored at $2^{\circ}C$ $-2^{\circ}C$, and $-20^{\circ}C$ for 3 months. Germination was carried out on the filter papers moistened with distilled water; emergence of root, shoot, and seed spoilage were assessed. Seed viability was examined by the tetrazolium test. More than 90% of the seeds stored at $2^{\circ}C$ and $-2^{\circ}C$ without drying or endocarp dehydration germinated, but seeds that were dehydrated to have a moisture content (MC) below 31% showed poor germination and lost their viability. In addition, the seeds stored at $-20^{\circ}C$ failed to show effective germination. Conclusions: Seed storage after endocarp dehydration might help to improve seed quality and increase seedling's ability to stand during the spring-sowing of ginseng.

Effect of Soil Moisture and Temperature on Emergence of Forage Grasses (목초의 출아에 미치는 온도와 토양수분의 영향)

  • 윤세형
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.18 no.1
    • /
    • pp.27-34
    • /
    • 1998
  • The present study elucidates of the effect of less water stress in different temperature condition on the emergence of forage grasses. Water condition was controlled to 30% and 60% by water content by wet soil. The mean temperature is conducted by $10^{\circ}C$ (out side) and $20^{\circ}C$ (glass house). The results are as follows: 1. Mean emergence time and emergence day after sowing of grasses were greatly influenced by water content of soil and temperature. It was suggested that temperature was very important for the light competition with weed in the early growth of grass. 2. Accumulatied emergence of grasses was nat afected by temperature, but it was sensitively affected by water content of soil.

  • PDF

Effect of Light on Development of Microbody Functions in the Cotyledons of Rape (Brassica napus L.) Seedlings (유채 종자의 Microbody 기능 발달에 미치는 빛의 영향)

  • 피문자
    • Journal of Plant Biology
    • /
    • v.25 no.2
    • /
    • pp.73-81
    • /
    • 1982
  • The changes in activities of glyoxysomal and peroxisomal enzymes during the transition from fat degradation to photosynthesis were investigated with the cotyledns of rape (Brassica napus L.) seedlings. The development and disappearance of glyoxysomal enzyme (isocitrate lyase, EC 4.1.3.1; malate dehydrogenase, EC 1.1.1.37; catalase, EC 1.11.1.6) activities took place independently of light. It is concluded that the mobilization of storage fat is independent of photomorphogenesis. During early periods of development in the dark of light (days 1 through 3), the glyoxysomal enzyme activities were relatively high and the enzyme activities rose to a peak at 3rd day after sowing. Thereafter, the activities decreased gradually. While glyoxysomal enzyme activities were dropping, the peroxisomal enzyme (glycolate oxidase, EC 1.1.3.1) activities were increasing rapidly during the transition period in the light. Moreover, the changes of enzyme activities of the common microbody marker, catalase, indicated both functional patterns. The enzyme patterns in rape cotyledons indicate that the glyoxysomal function of microbodies is replaced by the peroxisomal function of these organelles during the transition from fat degradation to photosynthesis.

  • PDF

Growth and Nutrient Contents of Tomato Plug Seedlings as Influenced by Pre-planting Fertilizer Levels and Initiation Time of Fertigation (토마토 플러그육묘시 기비수준 및 관비 시작일이 묘 생육과 무기성분 함량에 미치는 영향)

  • Choi, Jong-Myung;Kim, Byoung-Gon
    • Journal of Bio-Environment Control
    • /
    • v.16 no.4
    • /
    • pp.379-387
    • /
    • 2007
  • This research was conducted to evaluate the influence of pre-planting fertilizer levels (PFL) and initiation time of fertigation (ITF) on growth and nutrient contents of tomato plug seedlings. The pre-planting fertilizer levels in a coir+peatmoss+perlite (4:4:2, v/v/v) substrate were adjusted to 0.5X, 1.0X and 1.0X, and initiation time of fertigation was set to 7, 14,21 and 28 days after sowing. Elevated PFL in same ITF increased plant growth such as fresh and dry weights at 35 and 70 days after sowing. Plugs with early feeding among treatments of equal amount of PFL also showed better growth as compared to those of later feeding. In each ITF, 0.5X treatment had the higher tissue $P_2O_5$ contents than 1.0X and 1.5X treatments. Elevated PFL resulted in the decrease of tissue K, Mg and Fe contents and increase of tissue Ca contents. The pH in soil solution of all root substrates except 0.5X treatment at 35 and 70 days after sowing were greater than 7.0, which is too high. This suggests that the amounts and kinds of Ca containing fertilizers should be altered to decrease the pH. The results of this research indicated that fertilizer levels should be increased to 1.5X except Ca fertilizer, and fertigation immediately after moving plug trays from germination room to greenhouse is required to increase crop growth and decrease cropping time.

Effect of Sowing Rate of Mixture on the Growth Chracteristics, Forage Yield and Quality of Rye and Rape (호밀과 유채의 혼파비율이 생육특성, 사초수량 및 영양소 수량에 미치는 영향)

  • 권응기;김병완;성경일;김창주
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.16 no.2
    • /
    • pp.147-154
    • /
    • 1996
  • Rye(Secale cereale L.) shows lower dry matter yield and nutrient content when it was harvested before wintering. This study was conducted to investigate how effect forage rape(Brassicu napus Subsp oleifera), which carries early maturity and can be harvested before wintering, on the increase of the forage yield and nutrient content when rye was sown mixed with the rape. Optimum sowing rate of the rye/rape mixture was also pursued in this study. The five treatment of rye single, rape single, ryel20+rape 1Okg/ha, rye84+rape 7kg/ha and rye60+rape 5kg/ha were sown on 2 September 1989. Rape single plot was cut one time(l9 November 1989) and the other plots were cuted two times(19 November 1989 and 20 May 1990). In botanical composition of the mixtures, rape recorded dominant ratio with 64~69% at the autumn cut. The rye84+rape 7kg/ha mixture plot marked the highest dry matter yield with 4.46t/ha among all the experimental plot at the autumn cut(P<0.05). In year total yield of dry matter(t/ha), rye single, rape single, rye120+rape IOkg/ha, rye84+rape 7kg/ha and rye60+rape 5kg/ha marked 13.6, 4.1, 12.7, 12.9 and 11.8, respectively. In crude protein content, the rye single plot was 17.2% at the autumn cut on the other hand the mixture plots showed increasing tendency with 18.0~19.9%. In crude fiber content, the mixture plots were remarkably lower than rye single plot. In year total yield of crude protein, rye84+rape 7kg/ha mixture plot showed the highest yield with 1.6lt/ha among all the experimental plots. Ratio of crude protein yield to crude fiber yield, rye84+rape 7kg/ha tended to be higher than the other mixture plots. It is confirmed that the rye/rape mixture can produce more forage than the rye single cropping when they are harvested in late autumn, besides the mixture forage contains higher crude protein than that rye single forage. It can be said that the rydrape mixture is more useful than the rye single cropping, and optimum sowing rate of the mixture is 84kg/ha of rye+7kg/ha of rape.

  • PDF

Evaluation of Growth and Yield on Transplanting time and Plant Density in ItalianRyegrass

  • Yun-Ho Lee;Hyeon-Soo Jang;Jeong-Won Kim;Bo-kyeong Kim;Deauk-Kim;Jong-Tak Youn
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.101-101
    • /
    • 2022
  • In recent years, due to climate change, the livestock industry has become more interested in the production of forage crops. In Korea, more than 74% of forage crops are cultivated in winter rice fields. In particular, Italian ryegrass (IRG) is depends on imports for more than 70% of its seeds. In generally, the IRG rapeseed cultivation method involves sowing from early October to mid-October by drill sowing seeding or spot seedling. However, the sowing period is delayed due to frequent rainfall during. And, same period require a lot of seeds. However, raising seedlings and transplanted IRG will overcome weather conditions and reduce the amount of seeds. This study was intended to be applied to the domestic IRG seed industry in the future through growth and quantity evaluation according to transplant time and planting density for the production of good quality IRG seeds in rice paddy fields. In this study, transplanting time (October 20, October 30, November 10) and planting density (50, 70, and 80) were cultivated at the National Institute of Crop Science in 2021. The amount of fertilizer applied was adjusted to (N-P2O5-K2O) 4.5-12-12 (kg/10a), and then 2.2(kg/10a) of nitrogen was added each year. For the growth survey, leaf area, canopy coverage, plant length, and seed yield were investigated. Along with the transplanting time, the plant length was higher on October 20 than on October 30 and November 10. On the other hand, leaf area index changes differed depending on the transplanting time and planting density, and were particularly high on October 20, 80 density and 70 density, but similar on October 30 and November 10. 1000 seed weight showed no difference with transplanting time and planting density. On the other hand, the seed yield was 215(kg/10a) for 80 density on October 20, 211(kg/10a) for 70 density, 118(kg/10a) for 50 density, and 80 density for October 30 and November 10. and 70 density did not differ. On the other hand, the 50 density on October 30 and November 10 were 164(kg/10a) and 147(kg/10a) respectively. As can be seen from this study, the earlier the transplant, the higher the seed yield. However, the 50 density was reduced in yield compared to the 70 density and 80 density.

  • PDF

Prediction of Soybean Growth in the Northern Region based on Growth Data from the Southern Regions of the Korean Peninsula (한반도 남부지역 생육 데이터 기반 북방지역 콩 생육 예측)

  • Ye Rin Kim;Jong hyuk Kim;Il Rae Rho
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.68 no.4
    • /
    • pp.285-293
    • /
    • 2023
  • This study was conducted to determine the sowing limit period and predict growth in the northern region based on accumulative temperature for each growth stage of soybean cultivated in the southern regions of the Korean Peninsula. First, the results of a demonstration test in the central region (Yeoncheon) of the Korean Peninsula were very similar to the predicted and actual values on the date by growth stage obtained through cultivation. This method was then applied to seven agricultural climatic zones in the northern Korean Peninsula. The results predicted that regardless of ecotype, soybean could be grown and harvested in the southern and northern parts of Mt. Suyang, south of the East Sea, and in the central and northern inland areas. However, it was predicted that no ecotype could be grown and harvested normally in the northern alpine region. Furthermore, north of the East Sea, the prediction indicated that early and mid-maturing cultivars could be grown and harvested normally, but middle-late maturing cultivars appeared to lack the number of growth days. The sowing limit period also varied depending on the ecotype, although it was reached earlier as higher latitudes were approached; the period ranged from May 16 to June 26 in the northern and southern parts of Mt. Suyang, north and south of the East Sea, and central and northern inland areas. Furthermore, all ecotypes of the northern alpine region, as well as mid-late maturing cultivars in the north of the East Sea, were predicted to be unable to grow normally owing to the lack of number of days required for soybean growth and development.

Study of the Use of Winter Forage Crops, Early Maturing Rice and Summer Oats in Triple Cropping Systems at Paddy Field in Southern Region (남부지역 논에서 사료맥류, 조생종 벼 및 하파귀리를 활용한 삼모작 작부체계 연구)

  • Song, Tae-Hwa;Park, Tae-Il;Park, Hyong-Ho;Cho, Sang-Kyun;Oh, Young-Jin;Jang, Yun-Woo;Rho, Jea-Hwan;Park, Kwang-Geun;Kang, Hyeon-Jung
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.34 no.4
    • /
    • pp.227-233
    • /
    • 2014
  • This experiment was undertaken to develop triple cropping systems for winter cereal crops for forage, early maturing rice and oats, and to select a winter forage crop in order to determine rice transplanting time at paddy fields in the southern region. Also, the productivity and feed value of the resulting forage crops were examined. When winter cereal crops used for forages are first harvested at the early maturing rice transplanting period, and again harvested during the winter forage crop harvesting period, the fresh yield and dry matter yield of rye were 32.0, 42.3 ton/ha and 5.8, 16.5 ton/ha, respectively, demonstrating higher yields than other winter crops. The early maturing rice, 'Jopyeong', transplanted on June 4 had a lower percentage of ripened grain compared to those transplanted on May 6, and milled rice yield transplanted on June 4 was also decreased by 22%. Thus, the results showed that early transplanting was profitable. Regarding the oats grown during the fall cropping season, the heading date for the oats sown first was on October 10, but the heading was not observed in those sown later. Dry matter yield and TDN yield of the second sowing was less than 50% compared to the first. Consequently, rye may be the most suitable winter forage crop for triple cropping systems. Early transplanting of 'Jopyeong' after rye harvesting before April 30 in addition to timely sowing of oats in the fall season would be profitable for rice and forage production using triple cropping systems in the southern region.

Seedling Quality, and Early Growth and Fruit Productivity after Transplanting of Squash as Affected by Plug Cell Size and Seedling Raising Period (플러그 셀 크기와 육묘일수에 따른 애호박의 묘 소질, 정식 후 초기 생육 및 과실 생산성)

  • Kim, Yeong Sook;Park, Yoo Gyeong;Jeong, Byoung Ryong
    • Journal of Bio-Environment Control
    • /
    • v.28 no.3
    • /
    • pp.185-196
    • /
    • 2019
  • Abstract. This research was conducted to figure out the optimal size of the plug cell and seedling raising period in 'Nongwoo' and 'Nonghyeop' cultivars. In the first experiment on effect of plug cell size on growth of squash, seedlings were transplanted into hydroponic cultivation beds at different growing stages: Those in 32-cell trays with 3-4 true leaves at 25 days after sowing, those in 50-cell trays with 2 true leaves at 15 days after sowing, those in 105-cell trays just before a true leaf development, and those in 162-cell trays with only cotyledons at 8 days after sowing. In the second experiment on effect of seedling raising period on growth of squash, it was conducted to have different sowing dates. But the same transplanting date, based on the results of Experiment 1, and compared the differences in growth and fruit productivity as affected by plug cell size in the same way with experiment 1 including the cultivars and environmental conditions. After setting the transplanting date in advance, the number of days for sowing were calculated back for each treatment. In the first experiment, plant height was the greatest in 105-cell trays followed by 162, 50 and 32-cell trays in both cultivars. The best fruit quality was found in different treatments depending on the cultivars, although it was the lowest in 32-cell trays in both cultivars. The fruit quality was not significantly different among those from cell sizes. Therefore, when raising seedlings in 105-cell trays, the period of raising seedlings can be shortened as compared with the conventional 32-cell trays, and this change could reduce the workforce required for growing and transplanting seedlings. In the second experiment, after transplanting, shoot height and leaf width in the first measurement in both cultivars were greater in the 32-cell treatment. However, the last measurement after four weeks showed no significant difference in plant height, but significantly greatest leaf width in the smallest cell treatment, even as compared with that in 32-cell treatment. In case of 'Nongwoo', length and weight of the first harvested fruit showed the highest values in the treatment of 105-cell trays. In case of 'Nonghyeop' the 162-cell treatment along with the 105-cell treatment showed greatest length and weight of the first fruits. From these results, zucchini plug seedlings can be raised in plug trays with reduced cell sizes than the conventional 32-cell trays with improved fruit productivity.