DOI QR코드

DOI QR Code

Prediction of Soybean Growth in the Northern Region based on Growth Data from the Southern Regions of the Korean Peninsula

한반도 남부지역 생육 데이터 기반 북방지역 콩 생육 예측

  • Ye Rin Kim (Department of Applied Life Science, Gyeongsang National University) ;
  • Jong hyuk Kim (Department of Applied Life Science, Gyeongsang National University) ;
  • Il Rae Rho (Department of Agronomy, Gyeongsang National University)
  • 김예린 (경상국립대학교 응용생명과학부) ;
  • 김종혁 (경상국립대학교 응용생명과학부) ;
  • 노일래 (경상국립대학교 농학과)
  • Received : 2023.06.23
  • Accepted : 2023.10.05
  • Published : 2023.12.01

Abstract

This study was conducted to determine the sowing limit period and predict growth in the northern region based on accumulative temperature for each growth stage of soybean cultivated in the southern regions of the Korean Peninsula. First, the results of a demonstration test in the central region (Yeoncheon) of the Korean Peninsula were very similar to the predicted and actual values on the date by growth stage obtained through cultivation. This method was then applied to seven agricultural climatic zones in the northern Korean Peninsula. The results predicted that regardless of ecotype, soybean could be grown and harvested in the southern and northern parts of Mt. Suyang, south of the East Sea, and in the central and northern inland areas. However, it was predicted that no ecotype could be grown and harvested normally in the northern alpine region. Furthermore, north of the East Sea, the prediction indicated that early and mid-maturing cultivars could be grown and harvested normally, but middle-late maturing cultivars appeared to lack the number of growth days. The sowing limit period also varied depending on the ecotype, although it was reached earlier as higher latitudes were approached; the period ranged from May 16 to June 26 in the northern and southern parts of Mt. Suyang, north and south of the East Sea, and central and northern inland areas. Furthermore, all ecotypes of the northern alpine region, as well as mid-late maturing cultivars in the north of the East Sea, were predicted to be unable to grow normally owing to the lack of number of days required for soybean growth and development.

한반도 남부지방(진주)에서 콩 생태형에 따라 생육단계별 생육일수를 적산온도로 환산하여 한반도 북방지역 7개 농업기후지대의 콩 생육예측을 실시하였다. 그 결과는 아래와 같다. 1. 수양산 이남, 수양산 이북, 동해 남부, 중부 내륙, 북부내륙 지역들은 모든 생태형에서 정상적인 생육과 수확이 가능할 것으로 예측되었다. 2. 북부 고산지대는 모든 생태형에서 정상적인 생육이 불가능한 것으로 나타났고, 동해 북부지역은 조생종, 중생종은 정상적인 생육이 가능하지만 중만생종은 생육일수가 부족한 것으로 나타났다. 3. 파종 한계기는 수양산 이남, 수양산 이북, 동해 남부 지역은 생태형에 따라 6월 6일~26일까지, 중부 내륙 6월 2일~17일, 북부 내륙은 5월 24~6월 12일, 동해 북부는 5월 16일~6월 7일경인 것으로 조사되었다. 그러나 북부고산지대는 9℃기준인 4월 30일 파종하여도 생육일수가 부족한 것으로 나타났다.

Keywords

Acknowledgement

이 논문은 농촌진흥청 공동연구사업(과제번호:PJ015705022022)의 지원을 받았으며, 이에 감사합니다.

References

  1. Choi, Y. M., M. C. Lee, N. Ro, S. Lee, J. Gwag, and M. Yoon. 2014. Morphological characteristics and SSR profilings of soybean landraces of Korea. Korean Journal of Breeding Science. 46(4) : 353-363. https://doi.org/10.9787/KJBS.2014.46.4.353
  2. Heo, S. K., H. P. Mun, E. K. Jung, U. H. Yang, J. K. Lee, and T. Y. Kim. 2018. Improving food productivity in the North Korean region. In Korea Seed Research Society Symposium. pp. 113-167.
  3. Kaschuk, G., M. A. Nogueira, M. J. De Luca, and M. Hungria. 2016. Response of determinate and indeterminate soybean cultivars to basal and topdressing N fertilization compared to sole inoculation with Bradyrhizobium. Field Crops Research. 195: 21-27. https://doi.org/10.1016/j.fcr.2016.05.010.
  4. Kim, B. H., H. J. Lee, W. Kim, and S. J. Park. 2020. Estimation of meteorological ecology of soybean (Glycine max Merrill) for crop cultivation regions of North Korea. Korean J. Crop Sci. 65(1) : 56-62. https://doi.org/10.7740/kjcs.2020.65.1.056.
  5. Kim, K. G., S. N. Kim, S. O. Yu, Y. B. Bak, G. H. Kim, C. S. Kim, S. H. Han, S. Y. Kim, and E. J. Cha. 2021. Soybean-Agricultural guideline. Rural Development Administration. pp. 106-119.
  6. Kim, Y. H. and C. H. Lim. 2018. KREI North Korean agriculture trend. KREI. 20(2) : 3-9.
  7. Kim, Y. H. and C. H. Lim. 2019. KREI North Korean agriculture trend. KREI. 21(1) : 3-16.
  8. Korea Meteorological Administration (KMA). 2023. Years report of meteorological observations in north Korea. https://data.kma.go.kr/data/grnd/selectNkRltmList.do (Last accessed on May 31, 2023).
  9. Lee, H. J., B. H. Kim, W. Kim, and S. J. Park. 2020. Classification of flowering group and the evaluation of flowering characteristics for soybean (Glycine max Merrill) varieties from North Korea. Korean J. Crop Sci. 65(1) : 47-55.
  10. Lee, J. E., Jung, G. H., Kim, S. K., Kim, M. T., Shin, S. H., and Jeon, W. T. 2019. Effects of growth period and cumulative temperature on flowering, ripening and yield of soybean by sowing times. The Korean Journal of Crop Science. 64(4) : 406-413. https://doi.org/10.7740/KJCS.2019.64.4.406
  11. National Institute of Crop Science (NICS). 2019. Major research achievements. https://www.nics.go.kr/bbs/list.do?m=100000126&homepageSeCode=nics&bbsId=research (Last accessed on July 31, 2023).
  12. Rural Development Administration (RDA). (2018). Soybean cultivation. Rural Development Administration. Suwon, Korea. http://www.nongsaro.go.kr/ (cited by May 15, 2023).
  13. Szczerba, A, A. Plazek, J. Pastuszak, P. Kopec, M. Hornyak, and F. Dubert. 2021. Effect of low temperature on germination, growth, and seed yield of four soybean (Glycine max L.) cultivars. Agronomy. 11(4) : 800. https://doi.org/10.3390/agronomy11040800.
  14. United States Development of Agriculture (USDA). 2023. International production assessment division. https://ipad.fas.usda.gov/countrysummary/Default.aspx?id=KN&crop=Soybean. (Last accessed on May 10, 2023)
  15. Wang, C., X. Liu, X. Hao, Y. Pan, C. Zong, W. Zeng, W. Wang, G. Xing, J. He, and J. Gai. 2022. Evolutionary variation of accumulative day length and accumulative active temperature required for growth periods in global soybeans. Agronomy. 12(4) : 962.