• Title/Summary/Keyword: Early loading

Search Result 252, Processing Time 0.036 seconds

Analysis of Nutrient Dynamics and Development of Model for Estimating Nutrient Loading from Paddy Field

  • Jeon, Ji-Hong;Yoon, Chun-G.;Hwang, Ha-Sun;Jung, Kwang-Wook
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.45 no.7
    • /
    • pp.57-69
    • /
    • 2003
  • To evaluate nutrient dynamics with different fertilization in paddy field and develop water quality model, mass balance analysis was performed during growing season of 2001-2002 in field experimental plots irrigated with groundwater. As a result of water balance analysis, most of outflow was surface drainage as about half of total outflow and about 500mm was lost by evapotranspiration. The water budget was well balanced. The runoff from paddy field was influenced by rainfall and forced drain. Especially runoff during early cultural periods more depends on the forced drain. As a result of mass balance analysis, most of nutrient was input by fertilization and lost by plant uptake. Significant amount of nitrogen were supplied by precipitation and input from upper paddy field, comprising 12%∼28% of total inflow. Nutrient loading by surface drainage was occurred showing about 15%∼29% for T-N and 6%∼13% for T-P. The response of rice yield with different fertilization was not significant in this study. Water quality model for paddy field developed using Dirac delta function and continuous source was calibrated and validated to surface water quality monitoring data. It demonstrates good agreement between observed and simulated. The nutrient concentration of surface water at paddy field was significantly influenced by fertilization. During early cultural periods when significant amount of fertilizer was applied, surface drainage from paddy field can cause serious water quality problem. Therefore, reducing surface drainage during fertilization period can reduce nutrient loading from paddy fields. Shallow irrigation, raising the weir height in diked rice fields, and minimizing forced surface drainage are suggested to reduce surface drainage outflow.

A Study on the Interface Micromotions of Cementless Artificial Hip Replacement by Three-Dimensional FEM (무시멘트형 인공고관절 대치술후 초기의 경계면 미세운동의 3차원 FEM 연구)

  • Kim, S.K.;Chae, S.W.;Choi, H.Y.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1994 no.12
    • /
    • pp.71-74
    • /
    • 1994
  • In cementless total hip arthroplasty(THA), an initial stability of the femoral component is mandatory to achieve bony ingrowth and secondary long term fixation. Bone ingrowth depends strongly on relative micromotion and stress distributions at the interface. Primary stability of the femoral component can be obtained by minimizing the magnitude of relative micromotions at bone-prosthesis interface, Hence an accurate evaluation of interface behavior and stress/strain fields in the bone implant system may be relevant for better understanding of clinical situations and improving THA design. However, complete evaluation of load transfer in the bone remains difficult to assess experimentally, Hence, recently finite element method (FEM) was introduced in orthopaedic research field to fill the gap due to its unique capacity to evaluate stress in structure of complex shape, loading and material behavior. The authors developed the 3-dimensional numerical finite element model which is composed of totally 1179 elements off and 8 node blick. We also analyzed the micromotions at the bone-stem interface and mechanical behavior of existing bone prosthesis for a loading condition simulating the single leg stance. The result indicates that the values of relative motion for this well fit Multilock stem were $150{\mu}m$ in maximum, $82{\mu}m$ in minimum, and the largest relative motion developed in medial region of proximal femur with anterior-posterior direction. The proximal region of the bone was much larger in motion than the distal region and the stress pattern shows high stress concentration on the cortex near the tip of the stem. These findings indicates that the loading in the proximal femoral bone in the early postoperative situation can produce micromotions on the interface and clinically cementless TEA patient should not be allowed weight bearing strictly early in the postoperative period.

  • PDF

A Three-Dimensional Finite Element Study of Interface Micromotion in a Non-Cement Total Hip stem (FEM 3차원 모델을 이용한 인공관절 대퇴 Stem 경계면의 미세운동 분석)

  • Kim, Sung-Kon;Choi, Hyung-Yun;Chae, Soo-Won
    • Journal of Biomedical Engineering Research
    • /
    • v.17 no.1
    • /
    • pp.61-70
    • /
    • 1996
  • In cementless total hip arthroplasty(THA), an initial stability of the femoral component is mandatory to achieve bony inyowth and secondary long term fixation. Primary stability of the femoral component can be obtained by minimizing the magnitude of relative micromotions at bone stem interface. An accurate evaluation of interf'ace micromotion and stress/strain fields in the bone-implant system may be relevant for better understanding of clinical situations and improving THA design. Recently finite element method(FEM) was introduced in'orthopaedic research field due to its unique capacity to evaluate stress in structure of complex shape, loading and material behavior. The authors developed the 3-dimensional finite element model of proximal femur with $Multilock^{TM}$ stem of 1179 blick elements to analyse the micromotions and mechanical behaviors at the bone-stem inteface in early post-operative period for the load simulating single leg stance. The results indicates that the values of relative motion for this well fit stem were $150{\mu}m$ in maximum $82{\mu}m$ in minimum and the largest relative motion was developed in medial region of Proximal femur and in anterior-posterior direction. The motion in the proximal bone was much greater than in the distal bone and the stress pattern showed high stress concentration on the cortex near the tip of the stem. These findings indicate that the loading on the hip joint in the early postoperative situation before achieving bony ingrowth could produce large micromotion of $150{\mu}m$ and clinicaly non-cemented THA patient should not be allowed weight bearing strictly early in the postoperative period.

  • PDF

Variations in the Seed Production of Pinus densiflora Trees

  • Kang, Hye-Soon
    • Animal cells and systems
    • /
    • v.3 no.1
    • /
    • pp.29-39
    • /
    • 1999
  • Current data on reproductive characters of endemic and native species are essential to provide a strategy for the conservation of these species. Red pine (Pinus densiflora Sieb. & Zucc.) is one of the dominant, native tree species in Korea, but its reproductive ecology is not well-known. In 1997, the pattern of variation in cone and seed yields contributing to the conservation of declining populations of red pines was examined. Plant height and dbh were measured, and several new cones were collected from each tagged tree after counting the number of cones on each tree. For a subset of cones sampled, the number of fertile scales, the number of seeds at three development stages (early/late aborted, and filled seed), seed wing size, wing color, and individual filled seed mass were measured. The three sites which differed significantly in mean plant size also differed in mean cone and seed production per plant. However further analyses showed that most variation in characters examined occurred among plants within sites, but not among sites. An average of 90% of the potential seeds on the cones aborted at an early developmental stage, demonstrating that early abortion is a major factor affecting the number of filled seeds per cone. Individual seed mass was the only character which exhibited significant variations among sites as well as among trees within sites. Individual seed mass was overall negatively correlated with both the percentage of late abortion and the number of old cones per plant, suggesting that both the past and current years' reproductive activities have caused variations in seed mass. The potential dispersal distance of red pine seeds is quite large. However, wing loading was correlated with seed mass and number in a complex pattern across the sites. Distribution of seeds with varied colored wings differed among sites and among trees within sites. These results suggest that red pines at different sites might possess different strategies to cope with selection pressures acting during the final phase of reproduction, from seed dispersal to establishment. Then the ‘fitted’ red pine trees at each site should be identified and managed to conserve or restore populations.

  • PDF

Effect of the early exposure of cover screws on the survival rate of implants (덮개 나사 조기 노출이 임플란트의 생존율에 미치는 영향)

  • Kim, Yong-Gun;Lee, Jae-Kwan;Chang, Beom-Seok;Um, Heung-Sik
    • Journal of Periodontal and Implant Science
    • /
    • v.36 no.4
    • /
    • pp.879-889
    • /
    • 2006
  • The early exposure of cover screws is a common complication of 2-stage implant technique. The exposure of cover screws between stage I and IT surgery may cause inflammation in the soft tissues surrounding the implants, and lead to peri-implantitis or marginal bone loss. The purpose of this study was to evaluate the effect of the early exposure of cover screws on implants placed using 2-stage technique. Two hundred and nineteen implants in 77 patients were examined for cumulative survival rate, radiographic marginal bone level change, cause and frequency of the early exposure. The results were as follows: 1. Twenty-five implants showed early exposure of cover screws with a frequency of 11.4%. 2. Cumulative survival rate of the implants with early cover screw exposure was 88.0%, and that of the implants without cover screw exposure was 96,9%. 3. At the time of stage IT surgery and 1 year after loading, the marginal bone loss was greater around the implants with early exposure of cover screws than around the implants without cover screw exposure(p <0.05), 4, There was no statistically significant difference in the frequency of the early exposure according to the implant diameter, gender, and smoking(p >0,05).

Biomechanical Testing of Anterior Cervical Spine Implants: Evaluation of Changes in Strength Characteristics and Metal Fatigue Resulting from Minimal Bending and Cyclic Loading

  • Kim, Sung-Bum;Bak, Koang-Hum;Cheong, Jin-Hwan;Kim, Jae-Min;Kim, Choong-Hyun;Oh, Seong-Hoon
    • Journal of Korean Neurosurgical Society
    • /
    • v.37 no.3
    • /
    • pp.217-222
    • /
    • 2005
  • Objective: To achieve optimal fit of implant, it is necessary to bend the implant during spine surgery. Bending procedure may decrease stiffness of plate especially made of titanium and stainless steel. Typically titanium suffers adverse effects including early crack propagation when it is bent. We investigate whether 6 degree bending of titanium plates would decrease the stiffness after full cyclic loading by comparing with non-bending titanium plates group. Methods: Authors experimented 40 titanium alloy plates of 57mm in length, manufactured by 5 different companies. Total 40 plates were divided into two groups (20 bent plates for experimental group and 20 non-bent plates for control group). Twenty plates of experimental group were bent to 6 degree with 3-point bending technique and verified with image analyzer. Using the electron microscope, we sought for a initial crack before and after 3-point bending. Mechanical testing by means of 6000 cyclic axial-compression loading of 35N in compression with moment arm of 35mm-1.1 Nm was conducted on each plate and followed by the electron microscopic examination to detect crack or fissure on plates. Results: The stiffness was decreased after 6000 cyclic loading, but there was no statistically significant difference in stiffness between experimental and control group. There was no evidence of change in grain structure on the electron microscopic magnification. Conclusion: The titanium cervical plates can be bent to 6 degree without any crack or weakness of plate. We also assume that minimal bending may increase the resistance to fatigue fracture in cervical flexion-extension movement.

Peri-implant crevicular fluid levels of cathepsin-K, RANKL, and OPG around standard, short, and mini dental implants after prosthodontic loading

  • Alan, Raif;Marakoglu, Ismail;Haliloglu, Seyfullah
    • Journal of Periodontal and Implant Science
    • /
    • v.45 no.5
    • /
    • pp.169-177
    • /
    • 2015
  • Purpose: Despite the high success rates of endosseous dental implants, their placement is restricted according to the height and volume of bone available. The use of short or mini dental implants could be one way to overcome this limitation. Thus, this study aimed to compare standard, short, and mini dental implants with regard to associated clinical parameters and peri-implant crevicular fluid (PICF) levels of cathepsin-K (CTSK), RANK ligand (RANKL), and osteoprotegerin (OPG), after prosthodontic loading. Methods: A total of 78 non-submerged implants (Euroteknika, $Aesthetica^{+2}$, Sallanches, France) were installed in 30 subjects (13 male, 17 female; range, 26-62 years) who visited the clinic of the Periodontology Department, Faculty of Dentistry, Selcuk University. Sampling and measurements were performed on the loading date (baseline) and 2, 14, and 90 days after loading. Assessment of the peri-implant status for the implant sites was performed using the pocket probing depth (PPD), modified plaque index, modified gingival index, modified sulcular bleeding index, and radiographic signs of bone loss. PICF samples collected from each implant were evaluated for CTSK, RANKL, and OPG levels using the ELISA method. Keratinized tissue and marginal bone loss (MBL) were also noted. Results: Clinical parameters statistically significantly increased in each group but did not show statistical differences between groups without PPD. Although implant groups showed a higher MBL in the upper jaw, only the standard dental group demonstrated a statistically significant difference. At 90 days, the OPG:sRANKL ratio and total amounts of CTSK for each group did not differ from baseline. Conclusions: Within the limitations of this study, both short and mini dental implants were achieving the same outcomes as the standard dental implants in the early period after loading.

Experimental studies on steel frame structures of traditional-style buildings

  • Xue, Jianyang;Qi, Liangjie
    • Steel and Composite Structures
    • /
    • v.22 no.2
    • /
    • pp.235-255
    • /
    • 2016
  • This paper experimentally investigated the behavior of steel frame structures of traditional-style buildings subjected to combined constant axial load and reversed lateral cyclic loading conditions. The low cyclic reversed loading test was carried out on a 1/2 model of a traditional-style steel frame. The failure process and failure mode of the structure were observed. The mechanical behaviors of the steel frame, including hysteretic behaviors, order of plastic hinges, load-displacement curve, characteristic loads and corresponding displacements, ductility, energy dissipation capacity, and stiffness degradation were analyzed. Test results showed that the Dou-Gong component (a special construct in traditional-style buildings) in steel frame structures acted as the first seismic line under the action of horizontal loads, the plastic hinges at the beam end developed sufficiently and satisfied the Chinese Seismic Design Principle of "strong columns-weak beams, strong joints-weak members". The pinching phenomenon of hysteretic loops occurred and it changed into Z-shape, indicating shear-slip property. The stiffness degradation of the structure was significant at the early stage of the loading. When failure, the ultimate elastic-plastic interlayer displacement angle was 1/20, which indicated high collapse resistance capacity of the steel frame. Furthermore, the finite element analysis was conducted to simulate the behavior of traditional-style frame structure. Test results agreed well with the results of the finite element analysis.

Study on a seismic slit shear wall with cyclic experiment and macro-model analysis

  • Jiang, Huanjun;Lu, Xilin;Kwan, A.K.H.;Cheung, Y.K.
    • Structural Engineering and Mechanics
    • /
    • v.16 no.4
    • /
    • pp.371-390
    • /
    • 2003
  • The concept of the seismic slit shear wall was proposed in the early 1990's. A series of experimental and theoretic studies on the wall with reinforced concrete short connecting beams cast in the slit were carried out. In this paper another type of slit shear wall is studied. It is one with vertical slit purposely cast within the wall, and the rubber belt penetrated by a part of web shear reinforcement as seismic energy-dissipation device is filled in the slit. Firstly, an experiment under cyclic loading was carried out on two shear wall models, one slit and the other solid. The failure mechanism and energy-dissipation capacity are compared between the two different models, which testifies the seismic performance of the slit wall improved significantly. Secondly, for engineering practice purpose, a macroscopic analytical model is developed to predict the nonlinear behavior of the slit shear wall under cyclic loading. The mechanical properties of each constituent elements of this model are based on the actual behavior of the materials. Furthermore, the effects of both the axial force and bending moment on the shear behavior are taken into account with the aid of the modified compression-field theory. The numerical results are verified to be in close agreement with the experimental measurements.

A systematic review of the complications of single implant-supported restorations (단일 임플란트지지 보철물의 후유증에 관한 체계적 연구)

  • Chang, Moon-Taek
    • Journal of Periodontal and Implant Science
    • /
    • v.36 no.4
    • /
    • pp.925-938
    • /
    • 2006
  • The aim of this study was to systematically investigate the complications of single implant-supported restorations followed more than 5-year. Thirty-five studies were selected for the systematic review. A total of 3932 single implants were included at the beginning of studies. Thirty-one implants were removed before loading and 91 implants after loading. The overall implant loss rate was 3.1 %. Implant losses were concentrated on the period between loading and 2-year follow-up, and, after a stable period, increased after 5-year follow-up. The mean marginal bone loss at single-tooth implants was well within 0.2 mm/year, i.e., acceptable annual bone loss by the implant success criteria. However, considerable amounts of single implants suffered a marginal bone loss at implant more than 0.2 mm/year. Fistula was a frequent biological complication in the early studies. The most frequent technical problem was a screw loosening, but its frequency was reduced after the use of a gold screw and torque controller. Within the limits of this study, the complications of single implants might be underestimated due to the lack of information about the biological and technical complications available in the relevant literature.