• 제목/요약/키워드: Early Fault

검색결과 239건 처리시간 0.025초

롤러 베어링의 진동특성을 이용한 자동변속기 결함 검출에 관한 연구 (A Study on the Fault Detection of Auto-transmission Using the Vibrational Characteristics of Roller Bearings)

  • 박기호;정상진;위혁;이국선;조성호
    • 한국소음진동공학회논문집
    • /
    • 제19권3호
    • /
    • pp.268-273
    • /
    • 2009
  • The roller bearings play an important role not only sustain radial or axial load of system, but carry out a rotatory movement as a various operating conditions. They happen that incipient faults which were caused by excessive load, manufacturing or assembling process's errors and many other reasons are created. The bearing faults make noise and vibration by a continuous collision of rotatory components, which can lower the quality and stability of auto-transmission. Therefore, it is important to detect the early fault as soon as possible. This paper presents a detecting method for the improvement in quality by developing the program which can be used to analyze and predict the vibrational characteristics caused by roller bearing faults. We completed development of the inspection system of vibration by applying the most efficient detecting methods and verified the system's reliability through experiments.

동래 단층 중부 지역 웅촌-웅상 일대의 단층 지형과 지형 발달 (Fault-related Landforms and Geomorphological Processes Around Ungchon-Ungsang Areas in the Middle Part of the Dongrae Fault)

  • 이광률;박충선;신재열
    • 한국지형학회지
    • /
    • 제26권1호
    • /
    • pp.79-91
    • /
    • 2019
  • This study analyzed the distribution of fluvial landforms, fault-related geomorphic features and lineaments around the area of Ungchon-Ungsang in the Dongrae Fault, and discusses the charateristics of geomorphic development based on those. As a result, the NE-SW lineaments are predominantly developed in many numbers within the study area, and the NW-SE or N-S secondary lineaments are developed induced by multiple deformation with the Yangsan Fault. Geomorphologically, the early tectonic history of the Ungchon-Ungsang basin is largely divided into three stages ; 1) the Tertiary fault activity and formation of fracture zone, 2) development of erosional basin, 3) local crustal movements and development of fault-related topography. It is assumed that alluvial fans, deflected channel and stream piracy were formed by local tectonic movements related to faultings during the Quaternary.

언양지역(彦陽地域) 양산단층(梁山斷層) 부근(附近) 단열(斷裂)의 기하(幾何) 분석(分析) (The Geometric Analysis of Fractures near the Yangsan Fault in Eonyang Area)

  • 장태우;장천중;김영기
    • 자원환경지질
    • /
    • 제26권2호
    • /
    • pp.227-237
    • /
    • 1993
  • Lineaments in the Kyungsang basin most intensely develop in the East coast domain including the Yangsan fault, which dominantly run in NNE direction. The geometry of small fault population near or along the Yangsan fault represents the dominant strikes of N35E, high angle dips and shallowly plunging rakes with dextral movement sense. Stereographic solution on the Yangsan fault geometry gives the dip of 88SE, the slip direction of 17,024 and the slip rake of 18, which were determined from the strike (N23E) of the fault measured on map, and the average attitude (N35E, 84SE) and fault striation (16, 037) of small fault population considered as Riedel shears. It is judged from the geometry of small fault population to the main Yangsan fault and dragging features of bedding attitude near the fault that the Yangsan fault was produced from dextrally strike-slip movement. The movement of the Yangsan and the adjacent parallel faults is thought to be taken place much later than the other fault sets in the Kyungsang basin. It might occur during the geologic age from Eocence to early Miocene according to the consideration of K-Ar ages of the igneous rocks near the fault. The estimated paleostress state indicates ENE shortening and NNW extension. The displacement of the Yangsan fault in the study area is not constant along the fault but decreases from the south to the north. Taking the northern end of the study area as a separating point the whole extension of the Yangsan fault may be divided into southern and northern segments.

  • PDF

위상면궤적을 이용한 전력계통의 고장판별에 관한 연구 (A Study on the Classification of Arcing Faults in Power Systems using Phase Plane Trajectory Method)

  • 박남옥;신영철;안상필;여상민;김철환
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제51권5호
    • /
    • pp.209-216
    • /
    • 2002
  • Recently, there is greater demand for stable supply of electric power as higher level of our living. It becomes the important problem that the cause of fault in power system is found out in early stage, if once it occurs. In this respect, accurate classification of arcing faults in power systems is vitally important. This paper presents a new classification method for arcing faults in power system. To obtain data of various faults including high impedance fault(HIF) and low impedance fault(LIF), HIF model with the ZnO arrester is adopted and implemented within the overall transmission system model based on the electromagnetic transients program(EMTP). Results of phase plane trajectory if Clarke modal transformation using postfault current and voltage are utilized to classify types of arcing faults. The performance of the proposed method is tested on a typical 154 kV korean transmission system under various fault conditions. As can be seen from results, phase plane trajectory of postfault current should be combined with that of o component from Clarke modal transformation to give reliability of clear fault classification. Thus the proposed method can classify arcing faults including LIFs and HIFs accurately in power systems.

소프트웨어 신뢰성 예측을 위한 객체지향 척도 분석 (Analysis of Object-Oriented Metrics to Predict Software Reliability)

  • 이양규
    • 한국신뢰성학회지:신뢰성응용연구
    • /
    • 제16권1호
    • /
    • pp.48-55
    • /
    • 2016
  • Purpose: The purpose of this study is to identify the object-oriented metrics which have strong impact on the reliability and fault-proneness of software products. The reliability and fault-proneness of software product is closely related to the design properties of class diagrams such as coupling between objects and depth of inheritance tree. Methods: This study has empirically validated the object-oriented metrics to determine which metrics are the best to predict fault-proneness. We have tested the metrics using logistic regressions and artificial neural networks. The results are then compared and validated by ROC curves. Results: The artificial neural network models show better results in sensitivity, specificity and correctness than logistic regression models. Among object-oriented metrics, several metrics can estimate the fault-proneness better. The metrics are CBO (coupling between objects), DIT (depth of inheritance), LCOM (lack of cohesive methods), RFC (response for class). In addition to the object-oriented metrics, LOC (lines of code) metric has also proven to be a good factor for determining fault-proneness of software products. Conclusion: In order to develop fault-free and reliable software products on time and within budget, assuring quality of initial phases of software development processes is crucial. Since object-oriented metrics can be measured in the early phases, it is important to make sure the key metrics of software design as good as possible.

Software Fault Prediction at Design Phase

  • Singh, Pradeep;Verma, Shrish;Vyas, O.P.
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권5호
    • /
    • pp.1739-1745
    • /
    • 2014
  • Prediction of fault-prone modules continues to attract researcher's interest due to its significant impact on software development cost. The most important goal of such techniques is to correctly identify the modules where faults are most likely to present in early phases of software development lifecycle. Various software metrics related to modules level fault data have been successfully used for prediction of fault-prone modules. Goal of this research is to predict the faulty modules at design phase using design metrics of modules and faults related to modules. We have analyzed the effect of pre-processing and different machine learning schemes on eleven projects from NASA Metrics Data Program which offers design metrics and its related faults. Using seven machine learning and four preprocessing techniques we confirmed that models built from design metrics are surprisingly good at fault proneness prediction. The result shows that we should choose Naïve Bayes or Voting feature intervals with discretization for different data sets as they outperformed out of 28 schemes. Naive Bayes and Voting feature intervals has performed AUC > 0.7 on average of eleven projects. Our proposed framework is effective and can predict an acceptable level of fault at design phases.

기계구동계의 손상상태 모니터링을 위한 신경회로망의 적용 (Applicaion of Neural Network for Machine Condition Monitoring and Fault Diagnosis)

  • 박흥식;서영백;조연상
    • Tribology and Lubricants
    • /
    • 제14권3호
    • /
    • pp.74-80
    • /
    • 1998
  • The morphologies of the wear particles are directly indicative of wear process occuring in the machine. The analysis of wear particle morphology can therefore provide very early detection of a fault and can also ofen facilitate a dignosis. For this work, the neural network was applied to identify friction coefficient through four shape parameters (50% volumetric diameter, aspect, roundness and reflectivity) of wear debris generated from the machine. The averages of these parameters were used as inputs to the network. It is shown that collect identification of friction coefficient depends on the ranges of these shape parameters learned. The various kinds of the wear debris had a different pattern characteristics and recognized relation between the friction condition and materials very well by neural network. We discuss how the network determines difference in wear debris feature, and this approach can be applied for machine condition monitoring and fault diagnosis.

벡터제어 유도전동기 구동시스템을 위한 센서고장 검출 및 보상 (Sensor Fault Detection and Compensation Schemes for Vector Controlled Induction Motor Drives)

  • 류지수;이기상
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 합동 추계학술대회 논문집 정보 및 제어부문
    • /
    • pp.42-45
    • /
    • 2001
  • In the speed-sensorless induction motor control systems, only a few percents of error in current measurement badly deteriorates the control performance. And early detection and accomodation of the faults of current sensor is very important to enhance the reliability of the induction motor control system. In this paper, we propose two sensor fault detection schemes having desired functions; fault detection, isolation of failed sensor and compensation of fault effect. The two schemes operate in real-time and employ EKFs (Extended Kalman Filter) for residual generation. Simulation results show that the proposed schemes are very useful in maintaining the control performance of the induction motor driven servo systems even in the face of sensor faults.

  • PDF

AE 신호를 위한 새로운 DWT 기저함수 제안 및 적용 (Proposition and Application of Novel DWT Mother Function for AE signature)

  • 구동식;김재구;최병근
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2011년도 춘계학술대회 논문집
    • /
    • pp.582-587
    • /
    • 2011
  • Acoustic Emission(AE) is widely used for early detection of faults for rotating machinery in these days because of its high sensitivity. AE signal has to need for transferring to low frequency range for the spectrum analysis included the fault mechanism. In transferring process, we lose a lot of fault information caused by unusable signal processing method. Discrete Wavelet Transform(DWT) is a method of signal processing for AE signatures, but the pattern of its mother function is not optimized with AE signals. So, we can lose the fault information when we want to use the DWT for AE signal. Therefore, in this paper, we will propose a novel pattern for DWT mother function, which is optimized with AE signals. And it will be applied to compare the results of DWT by daubechie and novel pattern.

  • PDF

저속회전축의 균열 검출을 위한 음향방출기법의 적용 (Application of the AE Technique for The Detection of Shaft Crack with Low Speed)

  • 구동식;김재구;최병근
    • 한국소음진동공학회논문집
    • /
    • 제20권2호
    • /
    • pp.185-190
    • /
    • 2010
  • Condition monitoring(CM) is a method based on non-destructive test(NDT). So, recently many kind of NDT were applied for CM. Acoustic emission(AE) is widely used for the early detection of faults in rotating machinery in these days because of high sensitivity than common accelerometers and detectable low energy vibration signals. And crack is considered one of severe fault in the rotating machine. Therefore, in this paper, study on early detection using AE has been accomplished for the crack of the low-speed shaft. There is a seeded initial crack on the shaft then the AE signal had been measured with low-speed rotation as the applied load condition. The signal detected from crack in rotating machine was detected by the AE transducer then the trend of crack growth had found out by using some of feature values such as peak value, skewness, kurtosis, crest factor, frequency center value(FC), variance frequency value(VF) and so on.