• 제목/요약/키워드: Early Embryo Development

검색결과 379건 처리시간 0.029초

체외성숙, 수정 및 체외배양에서 생산된 소 배반포기배의 ICM과 Trophectoderm세포수에 관한 연구 (ICM-Trophectoderm Cell Numbers of Bovine IVM/IVF/IVC Blastocysts)

  • 김은영;엄상준;김선의;윤산현;박세필;정길생;임진호
    • 한국가축번식학회지
    • /
    • 제20권1호
    • /
    • pp.27-34
    • /
    • 1996
  • 본 연구는 immunosurgery와 polynucleotide-specific 형광물질을 이용한 differential labelling기법으로 체외에서 소 수정란의 배발달을 유기하는데 효과적인 것으로 알려진 CR1배양액을 사용하여 체외생산된 소 배반포기배의 inner cell mass (ICM)와 trophectoderm(TE)의 총 세포수를 조사하고자 실시하였다. 공시 배반포기배는 체외수정 후 8일째에 얻어졌다. 체외생산된 배반포기배는 배반포강의 확대와 투명대 두께의 감소를 기준으로 초기, 중기 및 팽윤단계로 구분하였으며, 또한 같은 배발달군내의 배반포기배는 다시 두 군으로 나누어 bisbenzimide만을 처리하여 얻어진 총세포수와 immunosurgery와 two polynulceotide-specific 형광물질을 이용하여 얻어진 ICM와 TE의 총세포수를 비교하여 얻어진 결과는 다음과 같다. 1) 체외수정 후 8일째 배반포기배의 발달율은 29.3%였으며, 초기, 중기, 팽윤 및 부화단계로 구분하였을 때의 발달율은 각각 8.7, 9.9, 7.6, 3.1%였다. 2) Bisbenzimide를 이용한 배반포기배의 총 세포수는 초기, 중기 및 팽윤단게가 각각 46.9$\pm$8.6, 66.2$\pm$12.5, 122.8$\pm$14.4를 나타냈다. 이러한 결과는 CR1이 소 수정란의 발달에 적절한 배양액임을 알 수 있었다. 3) Immunosurgery와 polynucleotide-specific 형광물질을 이용한 differential labelling기법으로 배반포기배의 ICM과 TE 세포수를 초기, 중기 및 팽윤단계로 나누어 조사한 결과, ICM 세포수는 각각 12.8$\pm$5.9, 26.3$\pm$8.4, 35.5$\pm$15.0개 이었고, TE 세포수는 각각 30.5$\pm$5.0, 41.3$\pm$8.2, 81.1$\pm$13.4개로 나타나 ICM과 TE 세포수는 초기 배반포기배에서 팽윤 배반포기배로 진행됨에 따라 두배에서 세배 정도 증가되었음을 알 수 있었다. 또한, differential labelling과 bisbenzimide기법에서 얻어진 각각의 총세포수를 비교하였을 때 총세포수는 발달의 진행 정도에 따라 증가되며 그와 동시에 동일한 군 간의 세포수도 거의 유사함을 알 수 있었다. 따라서, ICM과 TE를 differential labelling하는 기법은 수정란의 quality를 평가하는데 매우 유용한 기법으로서 착상전 embryo 발달을 연구하는데 효과적으로 이용될 수 있다는 것을 시사한다.

  • PDF

Neural Transcription Factors: from Embryos to Neural Stem Cells

  • Lee, Hyun-Kyung;Lee, Hyun-Shik;Moody, Sally A.
    • Molecules and Cells
    • /
    • 제37권10호
    • /
    • pp.705-712
    • /
    • 2014
  • The early steps of neural development in the vertebrate embryo are regulated by sets of transcription factors that control the induction of proliferative, pluripotent neural precursors, the expansion of neural plate stem cells, and their transition to differentiating neural progenitors. These early events are critical for producing a pool of multipotent cells capable of giving rise to the multitude of neurons and glia that form the central nervous system. In this review we summarize findings from gain- and loss-of-function studies in embryos that detail the gene regulatory network responsible for these early events. We discuss whether this information is likely to be similar in mammalian embryonic and induced pluripotent stem cells that are cultured according to protocols designed to produce neurons. The similarities and differences between the embryo and stem cells may provide important guidance to stem cell protocols designed to create immature neural cells for therapeutic uses.

RNF152 negatively regulates Wnt/β-catenin signaling in Xenopus embryos

  • Yoon, Gang-Ho;Kim, Kyuhee;Park, Dong-Seok;Choi, Sun-Cheol
    • BMB Reports
    • /
    • 제55권5호
    • /
    • pp.232-237
    • /
    • 2022
  • The Wnt/β-catenin signaling plays crucial roles in early development, tissue homeostasis, stem cells, and cancers. Here, we show that RNF152, an E3 ligase localized to lysosomes, acts as a negative regulator of the Wnt/β-catenin pathway during Xenopus early embryogenesis. Overexpression of wild-type (WT) RNF152 inhibited XWnt8-induced stabilization of β-catenin, ectopic expression of target genes, and activity of a Wnt-responsive promoter. Likewise, an E3 ligase-defective RNF152 had repressive effects on the Wnt-dependent gene responses but not its truncation mutant lacking the transmembrane domain. Conversely, knockdown of RNF152 further enhanced the transcriptional responses induced by XWnt8. RNF152 morphants exhibited defects in craniofacial structures and pigmentation. In line with this, the gain-of-RNF152 function interfered with the expression of neural crest (NC) markers, whereas its depletion up-regulated NC formation in the early embryo. Mechanistically, RNF152 inhibits the polymerization of Dishevelled, which is key to Wnt signaling, in an E3 ligase-independent manner. Together, these results suggest that RNF152 controls negatively Wnt/β-catenin signaling to fine-tune its activity for NC formation in Xenopus embryo.

RAV1 Negatively Regulates Seed Development by Directly Repressing MINI3 and IKU2 in Arabidopsis

  • Shin, Hyun-young;Nam, Kyoung Hee
    • Molecules and Cells
    • /
    • 제41권12호
    • /
    • pp.1072-1080
    • /
    • 2018
  • A plant-specific B3 domain and AP2 domain-containing transcription factor, RAV1 acts as a negative regulator of growth in many plant species and its transcription was down-regulated by BR and ABA. In this study, we found that RAV1-overexpressing transgenic plants showed abnormally developed ovules, resulting in reduced seed size, weight, and number in a silique. Interestingly, the endogenous expression of RAV1 fluctuated during seed development; it remained low during the early stage of seed development and sharply increased in the seed maturation stage. In plants, seed development is a complex process that requires coordinated growth of the embryo, endosperm, and maternal integuments. Among many genes that are associated with endosperm proliferation and embryo development, three genes consisting of SHB1, MINI3, and IKU2 form a small unit positively regulating this process, and their expression was regulated by BR and ABA. Using the floral stage-specific RNAs, we found that the expression of MINI3 and IKU2, the two downstream genes of the SHB1-MINI3-IKU2 cascade in the seed development pathway, were particularly reduced in the RAV1-overexpressing transgenic plants. We further determined that RAV1 directly binds to the promoter of MINI3 and IKU2, resulting in their repression. Direct treatment with brassinolide (BL) improved seed development of RAV1-overexpressing plants, but treatment with ABA severely worsened it. Overall, these results suggest that RAV1 is an additional negative player in the early stages of seed development, during which ABA and BR signaling are coordinated.

Lactate Can Modulate the Expression of Lactate Dehydrogenase and Aquaporin Genes in Mouse Preimplanation Embryos

  • Shin, Soo-Jung;Cheon, Yong-Pil
    • 한국발생생물학회지:발생과생식
    • /
    • 제16권3호
    • /
    • pp.219-226
    • /
    • 2012
  • It is suggested that carbohydrate metabolites may involve in the development of morula to blastocyst but many of the mechanisms are not unmasked. Two-cell stage embryos were collected and examined the effects of lactate on the development of blastocyst in vitro. The expression profiles of lactate dehydrognase (Ldh) genes and aquaporin (Aqp) genes were analyzed with RT-PCR. The successful development from morula to blastocyst was dependent on lactate concentrations. The expression profiles of Ldh genes were changed by the lactate concentration. Ldha was expressed in morula stage at 10 mM lactate, and in blastocyst stage at lactate free condition. Ldhb was expressed in morula stage at 10 mM and 20 mM lactate, and in blastocyst stage at 10 mM lactate. Aqp genes were also showed different expression patterns by the lactate concentrations. Aqp3 was expressed in hatching embryo at 120 hr post hCG administration (hph) which was cultured in BWW medium and lactate free condition. Aqp7 was expressed in hatching embryos at 120 hph which was cultured at 10 mM lactate condition. Also Aqp8 was expressed in hatching embryo at BWW and 20 mM lactate condition. Aqp9 was expressed in morula at BWW and 10 mM lactate condition, and in blastocyst at BWW. Based on these results, it is suggested that concentration of lactate in the medium and the level of lactate synthesis in embryo is critical factor for blastocoels formation. In addition it is suggested that LDH may involve the AQPs expression in embryos.

Expression of Progranulin in Early and Late Gestation Human Placentas

  • Ka Hak-Hyun
    • Reproductive and Developmental Biology
    • /
    • 제30권2호
    • /
    • pp.107-113
    • /
    • 2006
  • Development of placenta is a complex process that is critical for the pregnancy and controlled by many factors including cytokines, hormones, growth factors and apoptotic molecules. Recently, it has been shown that progranulin (PGRN) functions in growth of embryo and trophectoderm as well as cell migration. To initiate understanding the role of PGRN in human placental development, we investigated the expression of PGRN mRNA and protein in early and late gestation human placentas, term cytotrophoblast cells and two choriocarcinoma cell lines, JEG-3 and Jar. Reverse transcriptase polymerase chain reaction identified mRNAs derived from the PGRN gene in all samples. Immunoblot analysis showed that PGRN proteins are present in early and late gestation human placentas with decreasing levels over gestation and that PGRN proteins are present in normal and transformed trophoblast cells. Immunohistochemical analysis using paraformaldehyde-fixed tissue sections taken from early and late stages of pregnancy showed that PGRN proteins are present in cytotrophoblast cells, syncytiotrophoblast and extravillous cytotrophoblast cells and that expression pattern of PGRN differed according to the stage of cell differentiation. The results of this study are consistent with the hypothesis that PGRN proteins have critical roles in placental development and suggest that PGRN may function in trophoblast cell growth and differentiation.

살충제 카바릴이 아프리카발톱개구리의 발생에 미치는 독성영향 (The Toxic Effects of a Pesticide Carbaryl on the Development of African Clawed Frog, Xenopus laevis)

  • 신상희;이미주;이유화;정선우;윤춘식
    • 한국환경과학회지
    • /
    • 제18권11호
    • /
    • pp.1247-1259
    • /
    • 2009
  • We investigated the toxic effects of carbaryl on early embryo development in the African clawed frog, Xenopus laevis. To test the toxic effects, frog embryo teratogenesis assays using Xenopus were performed. Embryos were exposed to various concentrations of carbaryl ($5{\sim}320\;{\mu}M$). $LC_{100}$ for carbaryl was $320\;{\mu}M$, and the $LC_{50}$ determined by probit analysis was the concentration of $235.68\;{\mu}M$. Exposure to $160\;{\mu}M$ of carbaryl resulted in 10 different types of severe external malformations. Histological examination revealed dysplasia of the eyes, heart, guts, somatic muscle, dorsal, liver, blood vessel and swelling of the pronephric ducts. Malformation of neural tissue and brain was not severe even in the high dose of carbaryl. Benzidine blood stain showed distinct inhibition of inducing erythrocytes in embryos and animal cap explants. Electron micrographs of embryo revealed retinal detachment, loose photoreceptor lamella and the degeneration of sarcomeres in the carbaryl-treated group. The mitochondrial degeneration was also observed in the test group.

Congenital Malformation Caused by Bisphenol A in Developing Chick Embryo

  • Kim Su Won;Kim Jin Sik;Ryu Hye Myung;Nam Jin Sik;Cheigh Hong Sik;Min Byung Tae;Park Soo Hyun;Yoo Min
    • 대한의생명과학회지
    • /
    • 제10권4호
    • /
    • pp.397-401
    • /
    • 2004
  • We have examined congenital malformation in developing chick embryo caused by endocrine disruptor, bisphenol A (BPA). We injected BPA into the air sac of developing egg on day 4 of incubation. BPA-treated group with a concentration of 10 ㎍/egg showed a little decrease on their body length compared to the untreated group. But the group treated with 50㎍/egg revealed severe malformation in eyeballs and bills. The group treated with 100㎍/egg could not continue their development after few days of incubation. These results indicate that BPA clearly inhibits the normal development in chick and it should be toxic to the developing fetus at early stage and in various tissues. The study should contribute to the understanding of toxic effect of BPA in developing human fetus when exposed to the BPA.

  • PDF

Improved Enucleation Efficiency of Pig Somatic Cell Nuclear Transfer by Early Denudation of Oocytes at 30 Hours of In Vitro Maturation

  • Song, Kil-Young;Hyun, Sang-Hwan;Lee, Eun-Song
    • 한국수정란이식학회지
    • /
    • 제22권4호
    • /
    • pp.235-243
    • /
    • 2007
  • Our goal was to examine the effects of early denudation on the enucleation efficiency and developmental competence of embryos following somatic cell nuclear transfer (SCNT) and parthenogenetic activation (PA). Oocytes were denuded following 30 h of in vitro maturation (IVM) and then cultured with (D+) or without (D-) their detached cumulus cells for additional $10{\sim}14$ h. Control oocytes were denuded after $40{\sim}44$ h of IVM. The size of the perivitelline space was larger at 40 h of IVM ($11.7{\sim}11.8{\mu}m$) than at 30 h ($8.9{\mu}m;$ p<0.01). The distances between the metaphase II (M II) plates and the polar bodies (PBs) were shorter in D+ ($19.4{\mu}m$) and D- oocytes ($18.9{\mu}m$) than in control oocytes ($25.5{\mu}m;$ p<0.01). Enucleation rates following blind aspiration at 40 h of IVM were higher (p<0.01) in D+ (92%) and D- oocytes (93%) compared to controls (82%). Early denudation did not affect oocyte maturation or the in vitro development of SCNT and PA embryos. When SCNT embryos from D+ oocytes were transferred to four gilts, pregnancy was established in two pigs, and one of them farrowed three live piglets. In conclusion, early denudation of oocytes at 30 h of IVM could improve the enucleation efficiency by maintaining the M II plate and the PB within close proximity and support the in vivo development of SCNT embryos to term.

Oct4-Transfection한 중간엽줄기세포 유래 핵이식 배반포의 Oct4 발현 분포 및 세포 자멸사의 변화에 관한 연구 (Study on Distribution of Oct4 Expression and Change of Apoptosis in Nuclear Transfer Blastocyst using Oct4-Transfected Mesenchymal Stem Cells)

  • 이원재;이정현;노규진;이성림
    • 한국수정란이식학회지
    • /
    • 제31권1호
    • /
    • pp.81-88
    • /
    • 2016
  • There are various factors i.e. donor cell type, culture system as well as technical procedures which influence the pre-implantation embryonic development; however, may attempts have been made and still it is under investigation to improve the cloning efficiency using somatic cell nuclear transfer technique. It is has been investigated that stem cells like mesenchymal stem cell are able to more efficiently reprogram and reactivate the expression of early embryonic genes to promote nuclear transfer efficiency. In addition, Oct4 expression plays a pivotal role in early embryo development. In the present study, we investigated distribution of Oct4 expression and changes of apoptosis and total cell number in nuclear transfer blastocyst after using Oct4 transfected bone marrow stem cell as donor cells. Although Oct4-RFP expression was observed across blastocyst, more concentrated intensity was shown at hatched region in blastocyst on day 7. Reduction of apoptotic bodies was revealed in Oct4 transfected blastocyst by TUNEL staining, however, there was no significant difference in total cell number between Oct4 transfected and non-transfected nuclear transfer embryos. In conclusion, Oct4 transfected donor cells exhibited higher expression in hatching sight in day 7 blastocyst and were able to prevent apoptosis compared to non-transfected donor cells.