• Title/Summary/Keyword: EVOH

Search Result 46, Processing Time 0.039 seconds

Characterization of Silica/EVOH Hybrid Coating Materials Prepared by Sol-Gel Method

  • Kim, Seong-Woo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.26 no.3
    • /
    • pp.288-296
    • /
    • 2009
  • In this study, the silica-based hybrid material with high barrier property was prepared by incorporating ethylene-vinyl alcohol (EVOH) copolymer, which has been utilized as packaging materials due to its superior gas permeation resistance, during sol-gel process. In preparation of this EVOH/$SiO_2$ hybrid coating materials, the (3-glycidoxy-propyl)-trimethoxysilane (GPTMS) as a silane coupling agent was employed to promote interfacial adhesion between organic and inorganic phases. As confirmed from FT-IR analysis, the physical interaction between two phases was improved due to the increased hydrogen bonding, resulting in homogeneous microstructure with dispersion of nano-sized silica particles. However, depending on the range of content of added silane coupling agent (GPTMS), micro-phase separated microstructure in the hybrid could be observed due to insufficient interfacial attraction or possibility of polymerization reaction of epoxide ring in GPTMS. The oxygen barrier property of the mono-layer coated BOPP (biaxially oriented polypropylene) film was examined for the hybrids containing various GPTMS contents. Consequently, it is revealed that GPTMS should be used in an optimum level of content to produce the high barrier EVOH/$SiO_2$ hybrid material with an improved optical transparency and homogeneous phase morphology.

폴리프로필렌의 친수화 개질 -Polypropylene-poly(vinyl alcohol-co-ethylene) 블렌드의 특성-

  • 임상규;손태원
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 1996.04a
    • /
    • pp.64-68
    • /
    • 1996
  • PP-EVOH(poly(vinyl alchol-co-ethylene)) blends were prepared by the mixing of polypropylene and poly(vinyl alcohol-co-ethylene) containing 38mol% of ethylene units (EVOH38) at melt state above PP melting temperature. The materials were characterized by using dynamic mechanical thermal analysis (DMTA), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and contact angle measurement to detemine the glass transition, meltin, decomposition temperatures, and wettability respectively. From the results, PP-EVOH(poly(vinyl alcohol-co-ethylene)) blends exgibits partial miscibility.

  • PDF

Preparation and Fundamental Characterization of EVOH Hollow Fiber Membranes via Thermally Induced Phase Separation (TIPS) (열유도상분리법을 이용한 EVOH 중공사 분리막의 제조 및 기본 특성)

  • Hou, Jian;Yun, Jaehan;Jeon, Sungil;Chung, Kun Yong;Byun, Hongsik
    • Membrane Journal
    • /
    • v.28 no.6
    • /
    • pp.395-405
    • /
    • 2018
  • Poly(ethylene-co-vinylalcohol) EVOH hollow fiber membranes were successfully fabricated via a thermally induced phase separation (TIPS) method. It was observed that all membranes fabricated under different spinning conditions had interconnected and bicontinuous structures through liquid-liquid phase separation. Glycerol and poly(ethylene glycol) 200 were used as diluents for the TIPS method. Glycerol was used as a mixing component in quenching bath to control pores on the outer surface of the hollow fiber membrane. Hot quenching bath with a mixing component to generate large pores on the outer surface of the hollow fiber membrane. The effects of polymer concentration, diluent and quenching bath on the morphologies, water permeabilities, and mechanical properties of the EVOH hollow fiber membranes were systematically investigated. The relationship between water permeability, mechanical properties and spinning conditions was discussed in detail.

Ternary Phased Graphene/Silica/EVOH Nanocomposites Coating Films (삼성분계 그래핀/실리카/EVOH 나노 복합 코팅 필름)

  • Kim, Seong Woo
    • Journal of Adhesion and Interface
    • /
    • v.23 no.3
    • /
    • pp.94-99
    • /
    • 2022
  • Ternary phased graphene/silica/EVOH nanocomposite coating materials were prepared via sol-gel process and solution blending process. From both SEM observations and XRD analysis, the exfoliated structure and dispersion state of graphene nanosheets and silica particles in the nanocomposites as well as the intercalated and exfoliated structure of the prepared graphene oxide were confirmed. The incorporation of GrO and silica at appropriate content resulted in remarkable improvement in oxygen barrier property of the ternary phased nanocompoiste-coated BOPP films, compared with that of binary(silica/EVOH) phased nanocomposite coating films, however, at excess amount of GrO and silica, very slight variation was observed due to incomplete exfoliation, dispersion of graphene tactoids, and formation of micro cracks in the silica clusters. In addition, the transparency of nanocomposite-coated film was investigated by measuring the light transmittance as a function of GrO contents, suggesting the possibility for the application of food packaging films.

Encapsulation of Semiconductor Gas Sensors with Gas Barrier Films for USN Application

  • Lee, Hyung-Kun;Yang, Woo Seok;Choi, Nak-Jin;Moon, Seung Eon
    • ETRI Journal
    • /
    • v.34 no.5
    • /
    • pp.713-718
    • /
    • 2012
  • Sensor nodes in ubiquitous sensor networks require autonomous replacement of deteriorated gas sensors with reserved sensors, which has led us to develop an encapsulation technique to avoid poisoning the reserved sensors and an autonomous activation technique to replace a deteriorated sensor with a reserved sensor. Encapsulations of $In_2O_3$ nanoparticles with poly(ethylene-co-vinyl alcohol) (EVOH) or polyvinylidene difluoride (PVDF) as gas barrier layers are reported. The EVOH or PVDF films are used for an encapsulation of $In_2O_3$ as a sensing material and are effective in blocking $In_2O_3$ from contacting formaldehyde (HCHO) gas. The activation process of $In_2O_3$ by removing the EVOH through heating is effective. However, the thermal decomposition of the PVDF affects the property of the $In_2O_3$ in terms of the gas reactivity. The response of the sensor to HCHO gas after removing the EVOH is 26%, which is not significantly different with the response of 28% in a reference sample that was not treated at all. We believe that the selection of gas barrier materials for the encapsulation and activation of $In_2O_3$ should be considered because of the ill effect the byproduct of thermal decomposition has on the sensing materials and other thermal properties of the barrier materials.

Study on the Crystallization Behavior of the Compatible EVOH/SMA Blends (상용화된 EVOH/SMA 블렌드의 결정화 거동에 관한 연구)

  • Kim, Hyung-Il;Ahn, Byung-Hyun;Park, Soon-Ho
    • Applied Chemistry for Engineering
    • /
    • v.5 no.3
    • /
    • pp.379-384
    • /
    • 1994
  • A series of blends containing ethylene-vinyl alcohol(EVOH) and styrene-maleic anhydride(SMA) copolymers has been produced to study the effect of compatibilization on the crystallization behavior of the dispersed semicrystalline component. The crystallization behavior and the morphology of the blends have been characterized by differential scanning calorimetry(DSC) and scanning electron microscopy(SEM), respectively. Depending on the compatibilization, a part of crystallization of the dispersed phase took place with greater undercooking. Homogeneous crystallization was responsible for the shift of crystallization temperature for those compatibilized blends.

  • PDF

The Effect of Vacuum Films on Physicochemical and Microbiological Characteristics of Hanwoo (Korean Native Cattle)

  • Hwan Hee Yu;Sung Hun Yi;Sang-Dong Lim;Sang-Pil Hong
    • Food Science of Animal Resources
    • /
    • v.43 no.3
    • /
    • pp.441-453
    • /
    • 2023
  • The objective of this study was to investigate the physicochemical and microbiological characteristics of round of Hanwoo by vacuum packaging film materials, polyvinylidene chloride (PVDC) and ethylene vinyl alcohol (EVOH). The packaged beef samples were stored in refrigerated conditions (2±1℃) for 12 weeks. Physicochemical analysis with pH, surface color, thiobarbituric acid reactive substances (TBARS) values, and volatile basic nitrogen (VBN) values and microbiological analysis with aerobic plate count (APC) and metagenomic analysis of packaged beef samples were performed. The pH and surface color did not change substantially during the 12 weeks and EVOH-packaged beef tended to be lower than those of PVDC-packaged beef. PVDC- and EVOH-packaged samples showed low TBARS and VBN values below standard limits. APC did not exceed 7 Log CFU/g for both samples during storage. In metagenomic analysis, Firmicutes and Lactobacillaceae were dominant phylum and family of the PVDC- and EVOH-packaged beef. In both packaged samples, Dellaglioa algida was the dominant species during storage, with the notable difference being the presence of Lactococcus piscium. Therefore, this study provided the information on the quality of vacuum-packaged beef according to different vacuum films for long-term refrigerated storage.

Shelf Life Prediction of Seasoned Anchovies packaged with PET/EVOH Film (포장(PET/EVOH Film) 멸치조미가공품의 유통기한 예측)

  • Lee, Eui-Seok;Lee, Hyong-Ju;Bae, Jae-Seok;Kim, Yong-Kuk;Lee, Jong-Hyeouk;Hong, Soon-Taek
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.23 no.6
    • /
    • pp.827-832
    • /
    • 2013
  • An attempt is made to predict the shelf life of seasoned anchovies packaged with laminated film, composed of polyethylene terephthalate (PET) and ethylene vinyl alcohol (EVOH). First, a descriptive sensory analysis is carried out to determine the principal sensory quality index in seasoned anchovies. Then, the physicochemical quality index with high correlation to the principal sensory quality index is determined accordingly. Subsequently, with the physicochemical quality index, the shelf-life is estimated by using the Arrhenius equation. As for the sensory quality index, 'color' is determined as a principal sensory quality index. For all samples stored at 3 different temperatures (25, 35, $45^{\circ}C$), it is observed that the sensory score is shown to be over 2.5 until 60 days of storage period, which is the lowest acceptable level. In addition, the b-value, as a physicochemical quality index, is determined to have a high correlation to the sensory quality index. Further, the activation energy and the Q10 value for the b-value by the Arrhenius equation is found to be 11.24 kcal/mol, 1.385~2.011, respectively. Thus, it can be concluded that the shelf life of seasoned anchovies packaged with PET/EVOH film is estimated to be 279.44 days when stored at $20^{\circ}C$.

PREPARATION OF POLY(ETHYLENE-CO-VINYL ALCOHOL) MEMBRANE VIA THERMALLY INDUCED PHASE SEPARATION

  • Matsuyama, Hideto;Shang, Mengxian;Teramoto, Masaaki
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 2004.05a
    • /
    • pp.74-77
    • /
    • 2004
  • Porous membranes were prepared via thermally induced phase separation (TIPS) of (ethylene-co-vinyl alcohol) (EVOH)/glycerol mixtures. The liquid-liquid (L-L) phase boundaries are shifted to higher temperature when the ethylene contents in EVOH increase. Moreover, the kinetic study proved that the growth of droplets formed by the general liquid-liquid (L-L) phase separation obeyed a power-law scaling relationship in the later stage of spinodal decomposition (SD). A new phase separation mechanism was presented, in which the L-L phase separation could be resulted from the crystallization. The hollow fiber membranes were prepared. The membranes showed asymmetric structures with skin layer near the outer surface, the larger pores just below the skin layer and the smaller pores near the inner surface. The effect of ethylene content (EC) in EVOH, cooling water bath temperature and take-up speed on membrane performance was investigated.

  • PDF