Browse > Article
http://dx.doi.org/10.14579/MEMBRANE_JOURNAL.2018.28.6.395

Preparation and Fundamental Characterization of EVOH Hollow Fiber Membranes via Thermally Induced Phase Separation (TIPS)  

Hou, Jian (Department of Chemical Engineering, Zibo Vocational Institute)
Yun, Jaehan (Department of Chemical Engineering, Keimyung University)
Jeon, Sungil (MEMBRARE Co., Ltd.)
Chung, Kun Yong (Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology)
Byun, Hongsik (Department of Chemical Engineering, Keimyung University)
Publication Information
Membrane Journal / v.28, no.6, 2018 , pp. 395-405 More about this Journal
Abstract
Poly(ethylene-co-vinylalcohol) EVOH hollow fiber membranes were successfully fabricated via a thermally induced phase separation (TIPS) method. It was observed that all membranes fabricated under different spinning conditions had interconnected and bicontinuous structures through liquid-liquid phase separation. Glycerol and poly(ethylene glycol) 200 were used as diluents for the TIPS method. Glycerol was used as a mixing component in quenching bath to control pores on the outer surface of the hollow fiber membrane. Hot quenching bath with a mixing component to generate large pores on the outer surface of the hollow fiber membrane. The effects of polymer concentration, diluent and quenching bath on the morphologies, water permeabilities, and mechanical properties of the EVOH hollow fiber membranes were systematically investigated. The relationship between water permeability, mechanical properties and spinning conditions was discussed in detail.
Keywords
EVOH; thermally induced phase separation (TIPS); hollow fiber membrane; diluent;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S. Rajabzadeh, C. Liang, Y. Ohmukai, T. Maruyama, and H. Matsuyama, "Effect of additives on the morphology and properties of poly(vinylidene fluoride) blend hollow fiber membrane prepared by the thermally induced phase separation method", J. Membr. Sci., 423-424, 189-194 (2012).   DOI
2 S. Rajabzadeh, D. Ogawa, Y. Ohmukai, Z. Zhou, T. Ishigami, and H. Matsuyama, "Preparation of a PVDF hollow fiber blend membrane via thermally induced phase separation (TIPS) method using new synthesized zwitterionic copolymer", Desalination and Water Treatment, 54, 2911-2919 (2015).   DOI
3 S. S. Kim and D. R. Lloyd, "Microporous membrane formation via thermally-induced phase separation. III. Effect of thermodynamic interactions on the structure of isotactic polypropylene membranes" J. Membr. Sci., 64, 13-29 (1991).   DOI
4 H. Matsuyama, H. Okafuji, T. Maki, M. Teramoto, and N. Kubota, "Preparation of polyethylene hollow fiber membrane via thermally induced phase separation", J. Membr. Sci., 223, 119-126 (2003).   DOI
5 H. Matsuyama, K. Ohga, T. Maki, M. Tearamoto, and S. Nakatsuka, "Porous cellulose acetate membrane prepared by thermally induced phase separation", J. Appl. Polym. Sci., 89, 3951-3955 (2003).   DOI
6 S.-W. Song and J. M. Torkelson, "Coarsening effects on the formation of microporous membranes produced via thermally induced phase separation of polystyrene-cyclohexanol solutions", J. Membr. Sci., 98, 209-222 (1995).   DOI
7 Y.-R. Qiu, N. A. Rahman, and H. Matsuyama, "Preparation of hydrophilic poly(vinyl butyral)/ pluronic F127 blend hollow fiber membrane via thermally induced phase separation", Sep. Purif. Technol., 61, 1-8 (2008).   DOI
8 P. Sukitpaneenit and T.-S. Chung, "Molecular elucidation of morphology and mechanical properties of PVDF hollow fiber membranes from aspects of phase inversion, crystallization and rheology", J. Membr. Sci., 340, 192-205 (2009).   DOI
9 M. Shang, H. Matsuyama, M. Teramoto, D. R. Lloyd, and N. Kubota, "Effect of glycerol content in cooling bath on performance of poly(ethylene- co-vinyl alcohol) hollow fiber membranes", Sep. Purif. Technol., 45, 208-212 (2005).   DOI
10 M. Shang, H. Matsuyama, M. Teramoto, D. R. Lloyd, and N. Kubota, "Preparation and membrane performance of poly(ethylene-co-vinyl alcohol) hollow fiber membrane via thermally induced phase separation", Polymer, 44, 7441-7447 (2003).   DOI
11 D. L. VanderHart, S. Simmons, and J. W. Gilman, "Solid State 13C NMR of ethylene/vinyl alcohol copolymers: morphological partitioning of hydroxyls", Polymer, 36, 4223-4232 (1995).   DOI
12 E.-R. Kenawy, J. M. Layman, J. R. Watkins, G. L. Bowlin, J. A. Matthews, D. G. Simpson, and G. E. Wnek, "Electrospinning of poly(ethylene-co-vinyl alcohol) fibers", Biomaterials, 24, 907-913 (2003).   DOI
13 Z. Cui, N. T. Hassankiadeh, S. Y. Lee, K. T. Woo, J. M. Lee, A. Sanguineti, V. Arcella, Y. M. Lee, and E. Drioli, "Tailoring novel fibrillar morphologies in poly(vinylidene fluoride) membranes using a low toxic triethylene glycol diacetate (TEGDA) diluent", J. Membr. Sci., 473, 128-136 (2015).   DOI
14 B. J. Cha and J. M. Yang, "Effect of high-temperature spinning and PVP additive on the properties of PVDF hollow fiber membranes for microfiltration", Macromol. Res., 14, 596-602 (2006).   DOI
15 J. F. Kim, J. H. Kim, Y. M. Lee, and E. Drioli, "Thermally induced phase separation and electrospinning methods for emerging membrane applications: A review", AIChE J., 62, 461-490 (2016).   DOI
16 Z. Cui, N. T. Hassankiadeh, S. Y. Lee, J. M. Lee, K. T. Woo, A. Sanguineti, V. Arcella, Y. M. Lee, and E. Drioli, "Poly(vinylidene fluoride) membrane preparation with an environmental diluent via thermally induced phase separation", J. Membr. Sci., 444, 223-236 (2013).   DOI
17 C. Fang, S. Jeon, S. Rajabzadeh, L. Fang, L. Cheng, and H. Matsuyama, "Tailoring both the surface pore size and sub-layer structures of PVDF membranes prepared by the TIPS process with a triple orifice spinneret", J. of Mater. Chem. A, 6, 20712-20724 (2018).   DOI
18 M. M. Eva, V. G. Jose, D. Irene, V. G.-A Jose, M.-C. Rufino, G. Rafael, and J. Misericordia, "Impact of bioactive packaging systems based on EVOH films and essential oils in the control of aflatoxigenic fungi and aflatoxin production in maize", Int. J. of Food Microbiol., 254, 36-46 (2017).   DOI
19 J. Zhou, H. Zhang, H. Wang, and Q. Du, "Effect of cooling bathes on EVOH microporous membrane structures in thermally induced phase separation", J. Membr. Sci., 343, 104-109 (2009).   DOI
20 M.-G. Virginia, L.-C. Gracia, G. Rafael, and H.-M. Pilar, "Antimicrobial food packaging film based on the release of LAE from EVOH", Int. J. of Food Microbiol., 157, 239-244 (2012).   DOI
21 D. R. Lloyd, K. E. Kinzer, and H. S. Tseng, "Microporous membrane formation via thermally induced phase separation. I. Solid-liquid phase separation", J. Membr. Sci., 52, 239-261 (1990).   DOI
22 D. R. Lloyd, S. S. Kim, and K. E. Kinzer, "Microporous membrane formation via thermallyinduced phase separation. II. Liquid-liquid phase separation", J. Membr. Sci., 64, 1-11 (1991).   DOI
23 Y. Lin, Y. Tang, H. Ma, J. Yang, Y. Tian, W. Ma, and X. Wang, "Formation of a bicontinuous structure membrane of polyvinylidene fluoride in diphenyl carbonate diluent via thermally induced phase separation", J. Appl. Polym. Sci., 114, 1523-1528 (2009).   DOI
24 Y.-H. Tang, Y.-K. Lin, B. Zhou, and X.-L. Wang, "PVDF membranes prepared via thermally induced (liquid-liquid) phase separation and their application in municipal sewage and industry wastewater for water recycling", Desalination and Water Treatment, 57, 22258-22276 (2016).   DOI
25 S. Jeon, H. Karkhanechi, L. Fang, L. Cheng, T. Ono, R. Nakamura, and H. Matsuyama, "Novel preparation and fundamental characterization of polyamide 6 selfsupporting hollow fiber membranes via thermally induced phase separation (TIPS)", J. Membr. Sci., 546, 1-14 (2018).   DOI
26 P. Marchetti, M. F. Jimenez Solomon, G. Szekely, and A. G. Livingston, "Molecular separation with organic solvent nanofiltration: A critical review", Chem. Rew., 114, 10735-10806 (2014).   DOI
27 H. Karkhanechi, S. Rajabzadeh, E. Di Nicolò, H. Usuda, A. R. Shaikh, and H. Matsuyama, "Preparation and characterization of ECTFE hollow fiber membranes via thermally induced phase separation (TIPS)", Polymer, 97, 515-524 (2016).   DOI
28 I. B. Valtcheva, S. C. Kumbharkar, J. F. Kim, Y. Bhole, and A. G. Livingston, "Beyond polyimide: Crosslinked polybenzimidazole membranes for organic solvent nanofiltration (OSN) in harsh environments", J. Membr. Sci., 457, 62-72 (2014).   DOI
29 S. Karan, Z. Jiang, and A. G. Livingston, "Sub-10 nm polyamide nanofilms with ultrafast solvent transport for molecular separation", Science, 348, 1347-1351 (2015).   DOI
30 R. W. Baker, "Membrane Technology and Applications, 3rd Edition", Wiley, West Sussex, United Kingdom (2012).
31 H. Matsuyama, S. Rajabzadeh, H. Karkhanechi, and S. Jeon, "1.7 PVDF hollow fibers membranes, in: Comprehensive membrane science and engineering (second edition)", Elsevier, Oxford, 137-189 (2017).
32 J. Yang, D. W. Li, Y. K. Lin, X. L. Wang, F. Tian, and Z. Wang, "Formation of a bicontinuous structure membrane of polyvinylidene fluoride in diphenyl ketone diluent via thermally induced phase separation", J. Appl. Polym. Sci., 110, 341-347 (2008).   DOI
33 Y. Tang, Y. Lin, W. Ma, Y. Tian, J. Yang, and X. Wang, "Preparation of microporous PVDF membrane via tips method using binary diluent of DPK and PG", J. Appl. Polym. Sci., 118, 3518-3523 (2010).   DOI