• Title/Summary/Keyword: EVA emulsion

Search Result 16, Processing Time 0.022 seconds

Physical Properies of Polymer Cement Mortar Using Ground FRP Wastes (분쇄된 FRP 폐기물을 사용한 폴리머 시멘트 모르타르의 물성)

  • 이병기;이범재;황의환;노재성
    • Magazine of the Korea Concrete Institute
    • /
    • v.10 no.5
    • /
    • pp.217-225
    • /
    • 1998
  • 분쇄한 FRP(Fiver-Reinforced Plastics) 폐기물을 사용한 폴리머 모르타르의 물성에 고나하여 조사하였다. 분쇄한 FRP 폐기물을 시멘트 모르타르의 세골재로 재활용하기 위하여 세골재에 대하여 0~50wt% 치환.사용하였고, FRP 폐기물의 사용으로 나타나는 강도 저하현상을 보완하기 위하여 3종류 폴리머 혼화제의 첨가량을 변화시켜 각종 공시체를 제작하였다. 폴리머 혼화제로서는 styrene-bytadiene rubber(SBR) 라텍스, polyacrylic ester(PAE) 에멀젼 및 ethylene-vinyl acetate(EVA)에멀젼을 사용하였다. 분쇄한 FRP 폐기물을 사용한 시멘트 모르타르에 폴리머 혼화제를 첨가하여 만든 폴리머 시멘트 모르타르는 폴리머 혼화제를 첨가하지 않은 모르타르보다 압축 및 휨강도가 크게 증가하였다. 폴리머 시멘트비 10wt%에서 세골재 대용으로 분쇄한 FRP 폐기물의 적정 치환량은 20wt%로 나타났다. 8$0^{\circ}C$에서 가열양생하여 제조한 폴리머 시멘트 모르타르는 폴리머 시멘트비 10wt%이하에서 표준양생한 모르타르보다 강도가 저하되었다. 폴리머 시멘트 포르타르의 흡수율은 폴리머 시멘트비가 증가함에 따라 크게 감소하였다.

Study on the Emulsion Polymerization of poly(vinyl acetate-co-ethylene) Using Poly(vinyl alcohol) as Emulsifier (Poly(vinyl alcohol)을 이용한 Poly(vinyl acetate-co-ethylene) Emulsion 중합에 대한 연구)

  • Choi, Yong-Hae;Lee, Won-Ki
    • Journal of Adhesion and Interface
    • /
    • v.11 no.3
    • /
    • pp.89-99
    • /
    • 2010
  • In this paper, for polymerization of poly(vinyl acetate-co-ethylene) (VAE) by redox system using poly(vinyl alcohol) (PVOH) as emulsifier on the properties of the final emulsion, and pH changes affect the physical properties of the final emulsion was investigated. The results of the molecular weight of PVOH had a dramatic impact on the emulsion properties. The used a low molecular weight of PVOH products was obtained low viscosity and using the high molecular weight of PVOH were obtained high viscosity product. However, changing the pH of the final polymerized product properties for the PVOH obtained different results. Generally, a poly(vinyl acetate) emulsion by a high degree of polymerization and high molecular weight of PVOH was obtained high viscosity of the final emulsion. But, in VAE was lower emulsion viscosity in high pH. This is the molecular weight of the emulsion during the synthesis of PVOH is considered to be affected by degradation. The final viscosity was decreased by grafting ratio and molecular weight were decreased with increasing of pH.

Study on the Graft Effect in Emulsion Polymerization of Poly(vinyl acetate-co-ethylene) Using Poly(vinyl alcohol) as Emulsifier (Poly(vinyl alcohol)를 이용한 Poly(vinyl acetate-co-ethylene) 에멀젼 중합에서 그라프트 연구)

  • Choi, Yong-Hae
    • Journal of Adhesion and Interface
    • /
    • v.12 no.1
    • /
    • pp.1-10
    • /
    • 2011
  • An automated reaction calorimeter was used to directly monitor the rate of emulsion polymerization of vinyl acetate using poly(vinyl alcohol) (PVAs) having different degrees of blockiness. By using this technique in conjunction with other off-line measurements of the evolution of particle size distributions, important details of the process were observed. No constant graft rate period was observed for both low and high initial monomer-water ratios. The gel effect was observed for the low monomer-water ratio recipe. The particle size distributions were broad (particle diameter 40~100 nm) and bimodal. Continuous nucleation was observed to be accompanied by 'limited aggregation' and flocculation during the particle growth stages. It was speculated to be due to the occurrence of the extensive 'limited aggregation' and chain transfer to PVA leading to grafting.

An Experimental Study on the Water-Proofing Properties of Concrete with the Grading Variations of Fine Aggregate (잔골재으 입도분포변화에 따른 콘코리트의 방수특성에 관한 실험적 연구)

  • 김승배;류현기;한천구;반호용
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1991.10a
    • /
    • pp.26-29
    • /
    • 1991
  • This study is designed for analyzing the properties of water-proofing on concrete according to the using EVA(ethylene vinyle acetate) emulsion, and the fine aggregate grading such as uniform, gap and continuously grading. And is aimed for presenting the reference data on the practical use.

  • PDF

Basic Properties of Polymer Cement Mortar with EVA Emulsion and Admixtures (EVA 에멀젼과 혼화재를 사용한 폴리머 시멘트 모르타르의 기초적 성질)

  • Jo, Young-Kug
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.6
    • /
    • pp.53-60
    • /
    • 2019
  • The purpose of this study is to evaluate the degree of improvement in strengths by mixing blast-furnace slag and fly ash in polymer cement mortar(PCM). The test specimens are prepared with EVA polymer dispersion, two types of Admixtures (blast-furnace slag and fly ash), five kinds of polymer-cement ratios (0, 5, 10, 15 and 20%), and six kinds of admixtures (0, 3, 5, 10, 15 and 20%). Plain cement mortar is also made for comparison. From the test results, the flowing of PCM is greatly improved with the mixing of the admixtures, and strengths of PCM compared to ordinary cement mortar are also improved due to a decrease in water cement ratio. In addition, the strength characteristics of PCM by admixtures are greatly improved in flexural strength with fly ash compared to other strengths. It is apparent that the optimum mix proportions with polymer-cement ratio of 10% or more, admixture contents 5 to 10% of flay ash for flexural strength improvement of EVA-cement mortar are recommended in this study.

Physical Properties of Polymer Modified Mortar Containing FRP Wastes Fine Powder (폐FRP 미분말을 사용한 폴리머 시멘트 모르타르의 물성)

  • 황의환;한천구;최재진;이병기
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.2
    • /
    • pp.190-198
    • /
    • 2002
  • In this research the physical properties of polymer modified mortar containing pulverized FRP(Fiber-Reinforced Plastics) wastes fine powder as a part of fine aggregate were investigated. Styrene-butadiene rubber(SBR) latex, polyacrylic ester(PAE) emulsion and ethylene-vinyl acetate(EVA) emulsion were used as Polymer modifier. Polymer modified mortars containing FRP wastes fine powder were prepared with various FRP wastes fine powder replacement(5∼30 wt%) for fine aggregate and polymer-cement ratios(5∼20 wt%). The water-cement ratio, water absorption rates and hot water immersion test, compressive and flexural strengths of polymer modified mortars were tested and the results compared to those of ordinary portland cement mortar. As the results, compressive and flexural strengths of polymer modified mortar containing FRP wastes fine powder depend on the contents of FRP wastes fine powder, type and additional amounts of polymer modifier. Some of them showed higher compressive and flexural strengths than those of ordinary portland cement mortar. Especially, SBR-modified mortar showed the highest strengths properties among three types of polymer modifier. Also water absorption rates, compressive and flexural strengths of SBR-modified mortar were more superior than those of PAE or EVA-modified mortar. The optimum mix proportions of SBR-modified mortar was 20 wt% of polymer-cement ratio and 20 wt% of FRP wastes fine powder replacement. Otherwise heat cured polymer modified mortar accelerated the improvement of early compressive and flexural strengths.