• Title/Summary/Keyword: EV charging

Search Result 179, Processing Time 0.025 seconds

A Problem of Locating Electric Vehicle Charging Stations for Load Balancing (로드밸런싱을 위한 전기차 충전소 입지선정 문제)

  • Kwon, Oh-Seong;Yang, Woosuk;Kim, Hwa-Joong;Son, Dong-Hoon
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.41 no.4
    • /
    • pp.9-21
    • /
    • 2018
  • In South Korea, Jeju Island has a role as a test bed for electric vehicles (EVs). All conventional cars on the island are supposed to be replaced with EVs by 2030. Accordingly, how to effectively set up EV charging stations (EVCSs) that can charge EVs is an urgent research issue. In this paper, we present a case study on planning the locations of EVCS for Jeju Island, South Korea. The objective is to determine where EVCSs to be installed so as to balance the load of EVCSs while satisfying demands. For a public service with EVCSs by some government or non-profit organization, load balancing between EVCS locations may be one of major measures to evaluate or publicize the associated service network. Nevertheless, this measure has not been receiving much attention in the related literature. Thus, we consider the measure as a constraint and an objective in a mixed integer programming model. The model also considers the maximum allowed distance that drivers would detour to recharge their EV instead of using the shortest path to their destination. To solve the problem effectively, we develop a heuristic algorithm. With the proposed heuristic algorithm, a variety of numerical analysis is conducted to identify effects of the maximum allowed detour distance and the tightness of budget for installing EVCSs. From the analysis, we discuss the effects and draw practical implications.

A Study on EVs Smart Charging Scheme Considering Time-of-Use Price and Actual Data (Time-of-Use 가격 및 실제 데이터를 고려한 전기 자동차 스마트 충전기법에 대한 연구)

  • Kim, Junhyeok;Kim, Chulhwan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.11
    • /
    • pp.1793-1799
    • /
    • 2016
  • As one of the main trends in global industries is eco-friendly energy, the interest on Electric Vehicle(EV) has been increased. However, if large amount of EVs start to charging, it could cause rapid increase in demand power of the power system. To guarantee stable operation of the power system, those unpredictable power consume should be mitigated. In this paper, therefore, we propose a practical smart EVs charging scheme to prevent the rapid increase of the demand power and also provide load flattening function. For that we considered Time-of-Use(ToU) price and actual data such as driving pattern and parameters of distribution system. Simulation results show that the proposed method provides proper load flattening function while preventing the rapid increase of the demand power of the power system.

Analysis on the Operation of a Charging Station with Battery Energy Storage System

  • Zhu, Lei;Pu, Yongjian
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.5
    • /
    • pp.1916-1924
    • /
    • 2017
  • Fossil oil, as the main energy of transportation, is destined to be exhausted. The electrification of transportation is a sustainable solution to the energy crisis, since electric power could be acquired from the inexhaustible sun, wind and water. Among all the problems that hinder the development of Electric Vehicle (EV) industry, charging issue might be the most prominent one. In this paper, the service process of a charging station with Battery Energy Storage System (BESS) is analyzed by means of $Cram{\acute{e}}r$ - Lundberg model which has been intensively utilized in ruin theory. The service quality is proposed in two dimensions: the service efficiency and the service reliability. The arrival rate and State of Charge (SOC) upon arrival are derived from 2009 National Household Travel Survey (NHTS). The simulations are performed to show how the service quality is determined by the system parameters such as the number of servers, the service rate, the initial capacity, the charge rate and the maximum waiting time. At last, the economic analysis of the system is conducted and the best combination of the system parameters are given.

A Performance Evaluation of a Heat Dissipation Design for a Lithium-Ion Energy Storage System Using Infrared Thermal Imaging (적외선 열화상을 활용한 리튬 이온 ESS의 방열설계 성능평가에 관한 연구)

  • Kim, Eun-Ji;Lee, Gyung-Il;Kim, Jae-Yeol
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.5
    • /
    • pp.105-110
    • /
    • 2020
  • The global battery market is rapidly growing due to the development of vehicles(EV) and wireless electronic products. In particular logistics robots, which hielp to produce EVs, have attracted much interest in research in Korea Because logistics sites and factories operate continuously for 24 hours, the technology that can dramatically increase the operation time of the logistics equipment is rapidly developing, and various high-level technologies are required for the batteries used in. for example, logistics robots. These required technologies include those that enable rapid battery charging as well wireless charging to charge batteries while moving. The development of these technologies, however, result in increasing explosions and topical accidents involving rapid charging batteries These accidents due to the thermal shock caused by the heat generated during the charging of the battery cell. In this study, a performance evaluation of a heat dissipation design using infrared thermal imaging was performed on an energy storage systrm(Ess) applied with an internal heat conduction cooling method using a heating plate.

A Study on RFID Code Structure for Traceability System of Electric Vehicle Batteries (전기자동차 배터리 추적 시스템을 위한 RFID 코드체계 설계에 관한 연구)

  • Kim, Woo-Ram;Chang, Yoon-Seok
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.12 no.4
    • /
    • pp.95-104
    • /
    • 2013
  • As global warming and depletion of fossil fuel are considered as urgent problems, the development of electric vehicle (EV) is getting more attention by automobile industry. However, the wide adoption of EVs is not coming yet, because of many issues such as long recharging time and high cost of batteries etc. As an alternative solution to the conventional battery charging EV, the idea of battery exchanging EV is introduced. To realize the battery exchanging business model, one should solve the issues of ownership and reliability of battery. To address such issues, the concept of battery sharing should be considered together with good traceability system. In this study, we studied RFID code structure to provide better visibility and traceability for shared EV batteries. The proposed RFID code and code generation system is based on GRAI-96 of EPCglobal and included factors such as chemical, physical, and manufacturing features. The designed code can be also used as the ID of each battery.

Modeling and Simulation of Electric Vehicle Sharing System for Optimized Operation (전기차 카셰어링 시스템 최적화를 위한 모델링 및 시뮬레이션)

  • Seo, Yong Won
    • Journal of the Korea Society for Simulation
    • /
    • v.25 no.4
    • /
    • pp.93-108
    • /
    • 2016
  • Electric vehicle car sharing (EV-sharing) system is noted as an eco-friendly system of transportation in global warming crisis and has been practically implemented in some cities around the world. However, methodologies to find the efficient operation conditions of EV-sharing systems reflecting a typical characteristic 'charging' have not been fully investigated yet. In the paper a generalized model has been developed to identify optimal level of infrastructure for EV-sharing system which provides the optimum operation efficiency under service level constraints. From the simulation analysis based on the developed model the relationships between the operational variables to describe EV-sharing system have been identified and optimal capacity to maximize the operational efficiency have been found. From the analysis of simulation results it has been found that increases in the number of vehicles and chargers improve the service level until certain value beyond which increasing rate and the efficiency have been reduced. From the cost-revenue analysis the optimal numbers of vehicles and chargers have been identified which maximizes the annual operational profit.

A New Product Risk Model for the Electric Vehicle Industry in South Korea

  • CHU, Wujin;HONG, Yong-pyo;PARK, Wonkoo;IM, Meeja;SONG, Mee Ryoung
    • Journal of Distribution Science
    • /
    • v.18 no.9
    • /
    • pp.31-43
    • /
    • 2020
  • Purpose: This study examined a comprehensive model for assessing the success probability of electric vehicle (EV) commercialization in the Korean market. The study identified three risks associated with successful commercialization which were technology, social, policy, environmental, and consumer risk. Research design, methodology: The assessment of the riskiness was represented by a Bayes belief network, where the probability of success at each stage is conditioned on the outcome of the preceding stage. Probability of success in each stage is either dependent on input (i.e., investment) or external factors (i.e., air quality). Initial input stages were defined as the levels of investment in product R&D, battery technology, production facilities and battery charging facilities. Results: Reasonable levels of investment were obtained by expert opinion from industry experts. Also, a survey was carried out with 78 experts consisting of automaker engineers, managers working at EV parts manufacturers, and automobile industry researchers in government think tanks to obtain the conditional probability distributions. Conclusion: The output of the model was the likelihood of success - expressed as the probability of market acceptance - that depended on the various input values. A model is a useful tool for understanding the EV industry as a whole and explaining the likely ramifications of different investment levels.

A Study of Durability Evaluation for Couplers in Battery Changeable Electric Vehicle (배터리 교환형 전기자동차의 배터리 접속기 내구성 평가에 관한 연구)

  • Kim, Kwang-Min;Yun, Jun-Bo;Kang, Byung-Guk;Lee, Ju
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.8
    • /
    • pp.69-74
    • /
    • 2014
  • Recently, many countries are researching and developing the various Electric Vehicle(EV) for reserving their natural environments and so on. But the charging time that is longer than the time of filling up the traditional engine vehicle will be the obstacles of spreading them. So, the other type EV is developed. It is the Battery Changeable EV. But there is not testing method for it. Especially, the defining of the durability evaluation for the couplers between battery and charger is very important because the couplers are changed very frequently. So, they may cause many faults and problems. Therefore, this study shows the definition of the durability procedure and the test is conducted with the equipment.

A Single-stage Interleaved Electrolytic Capacitor-less EV Charger with Reduced Component Count (전해커패시터가 없고 적은 소자수를 갖는 단일단 인터리브드 전기자동차용 충전기)

  • Kim, Min-Jae;Kim, Byeong-Woo;Jung, Bum-Kyo;Choi, Se-Wan
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.22 no.3
    • /
    • pp.185-192
    • /
    • 2017
  • This paper proposes a single-stage interleaved soft-switching electrolytic capacitor-less EV charger with reduced component count and simple circuit structure. The proposed charger achieves ZVS turn-on of all switches and ZCS turn-off of all diodes without regard to voltage and load variation. It achieves high power density even without an input filter due to CCM operation and bulky electrolytic capacitors and without a low-frequency component in the transformer. A 2 kW prototype of the proposed charger with sinusoidal charging is built and tested to verify the validity of the proposed operation.

EV Charging System through the Rail Power Grid (철도 전력망을 이용한 전기자동차 급속 충전 시스템)

  • You, Sung-Han;Lee, Tea-Hoon;Cho, Yong-Chan;Park, Lea-Hyuk
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1240-1241
    • /
    • 2011
  • 이 논문은 LS전선, 서울 메트로, 철도기술연구원(KRRI)이 공동으로 연구한 '도시철도 연계 EV 충전 시스템' 프로젝트와 LS전선, 환경공단이 공동 개발한 '전기 자동차 충전 인프라 구축 사업'을 바탕으로 내용을 구성 하였다. 전기 자동차 충전 인프라 시스템 구축은 크게 3가지 이슈 -전력 연계, 충전 시설, 충전기 운영 통신 시스템-가 있다. 전기 자동차 충전 시스템을 철도 전력 인프라망을 연계했을 때 얻을 수 있는 이점들, 충전 인프라 운영 시스템에 대한 실증 내용을 논하였으며 추가적으로 향후 계획도 포함되어 있다.

  • PDF