• Title/Summary/Keyword: ESTIMATOR 모델

Search Result 152, Processing Time 0.029 seconds

Extended Kalman Filter Design for Sensorless Control of IPMSM Drive (IPMSM의 센서리스 운전을 위한 확장 칼만 필터 설계)

  • Jeon, Yong-Ho;Cho, Min-Ho
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.11
    • /
    • pp.1681-1690
    • /
    • 2013
  • In this paper, a design of speed and position controller based on the EKF(Extended Kalman Filter) for sensorless control in IPMSM(Interior Permanent Magnet Synchronous Motor) is proposed. The proposed method subdivides the state estimation interval for improving the accuracy of state estimation. and each subdivided interval estimated first order term using Taylor series. The proposed state estimator comparison with the second-order extended Kalman filter reduced calculation amount of a priori estimation. And the simulation results were proved that The accuracy of priori estimation is increased.

State of Charge Estimator using Sliding Mode Observer for Hybrid Electric Vehicle Lithium Battery (슬라이딩모드 관측기를 이용한 하이브리드 자동차용 리튬배터리 충전량 예측방법)

  • Kim, Il-Song
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.12 no.4
    • /
    • pp.324-331
    • /
    • 2007
  • This paper studies new estimation method for state of charge (SOC) of the hybrid electric vehicle lithium battery using sliding mode observer. A simple R-C Lithium battery modeling technique is established and the errors caused by simple modeling was compensated by the sliding mode observer. The structure of the sliding mode observer is simple, but it shows robust control property against modeling errors and uncertainties. The performance of the system has been verified by the UUDS test. The test results of the proposed observer system shows robust tracking performance under real driving environments.

Gust Response Alleviation of a Three-dimensional Flexible Wing using Sliding Mode Control (슬라이딩 모드 제어기법을 이용한 3차원 유연날개 돌풍응답 제어)

  • Lee, Sang-Wook;Suk, Jinyoung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.10a
    • /
    • pp.220-225
    • /
    • 2013
  • In this study, active control system using sliding mode control method is presented to achieve the gust response alleviation of a three-dimensional flexible wing model. For this purpose, aeroservoelastic model which is composed of aeroelastic plant, control surface actuator model, and gust model depicting the atmospheric turbulence is formulated in the state space. The aerodynamic force generated by the motion of a trailing edge control surface of a flexible wing is made use of as control means. An active control system combining state feedback sliding mode controller and state estimator based on measured responses such as wing tip acceleration and wing root strain is designed for gust response alleviation of a flexible wing aeroservoelastic model. The performance of the controller designed is demonstrated via numerical simulation for the representative flexible wing model under gust loading conditions.

  • PDF

Improved Responsiveness of Model-Based Sensorless Control for Electric-Supercharger Motor using an Position Error Compensation (위치 오차 보상을 통한 전동식 슈퍼차저 모터의 모델 기반 센서리스 응답성 개선)

  • Park, Gui-Yeol;Hwang, Yo-Han;Heo, Nam;Lee, Ju
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.24 no.1
    • /
    • pp.9-15
    • /
    • 2019
  • Sensorless electric superchargers have recently been actively developed to provide a large amount of oxygen to engines in order assist the combustion process for miniaturizing the engines and improving fuel efficiency. The model-based sensorless method for surface-mounted permanent magnet synchronous motors has a disadvantage in that the system may become unstable due to parameter variations in low-speed operation and the rapid-acceleration section. An electric supercharger requires fast response to improve the engine response delay, such as the turbocharger turbo-rack. Therefore, the responsiveness must be improved to use the model-based sensorless system. The position compensation algorithm designed in this study is controlled by converting the position error into the beta, which is the angle formed by the d-axis and the stator current during sudden speed change. In this study, we improved the response of the model-based sensorless system through the algorithm and verified the algorithm validity by applying the algorithm to an actual dual-motor supercharger.

Model-based Analysis of Cell-to-Cell Imbalance Characteristic Parameters in the Battery Pack for Fault Diagnosis and Over-discharge Prognosis (배터리 팩 내부 과방전 사전 진단을 위한 모델기반 셀 간 불균형 특성 파라미터 분석 연구)

  • Park, Jinhyeong;Kim, Jaewon;Lee, Miyoung;Kim, Byoung-Choul;Jung, Sung-Chul;Kim, Jonghoon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.26 no.6
    • /
    • pp.381-389
    • /
    • 2021
  • Most diagnosis approaches rely on historical failure data that might not be feasible in real operating conditions because the battery voltage and internal parameters are nonlinear according to various operating conditions, such as cell-to-cell configuration and initial condition. To overcome this issue, the estimator and the predictor require integrated approaches that consider comprehensive data, with the degradation process and measured data taken into account. In this paper, vector autoregressive models (VAR) with various parameters that affect overdischarge to the cell in the battery pack were constructed, and the cell-to-cell parameters were identified using an adaptive model to analyze the influence of failure prognosis. The theoretical analysis is validated using experimental results in terms of the feasibility and advantages of fault prognosis.

A Stochastic Numerical Analysis of Groundwater Fluctuations in Hillside Slopes for Assessing Risk of Landslides (산사태 위험도 추정을 위한 지하수위 변동의 추계론적 수치 해석)

  • 이인모
    • Geotechnical Engineering
    • /
    • v.3 no.4
    • /
    • pp.41-54
    • /
    • 1987
  • A stochastic numerical analysis for predicting the groundswater fluctuations in hillside slopes is performed in this paper to account for the uncertainties associated with the rainfall and site characteristics. The effect of spatial variabilities of aquifer parameters and the effect of temporal variability of recharge on the groundwater fluctuations are studied in depth. The Kriging is used to account for the spatial tariabilities of aquifer parameters. This technique prolevides the best linear unbiased estimator of a parameter and its minimum variance from a litsitem number of measured data. A stochastic one-dimensional numerical model is delreloped b) combining the groundwater flow model, the Kriging, and the first-order second-moment analysis. In addition, a two dimensional detelministic groundwater model is developed to study the change of ground water surfas in the transverse direction as well as in the downslope direction. It is revealed that the undulations of the impervious bedrock in addition to the permeability and the specific yield have an important influence on the fluctuations of the groundwater surface. It is also found that th'e groundwater changes significantly in the transverse direction as well as in the downslope direction. The results obtained in this analysis may be used for evaluation of landslide risks due to high porewater pressure.

  • PDF

A Study on the Sensorless Speed Control of Induction Motor using Direct Torque Control (직접토크 제어를 이용한 유도전동기의 센서리스 속도제어에 관한 연구)

  • Yoon, Kyoung-Kuk;Oh, Sae-Gin;Kim, Jong-Su;Kim, Yoon-Sik;Lee, Sung-Gun;Kim, Sung-Hwan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.8
    • /
    • pp.1261-1267
    • /
    • 2009
  • The Direct Torque Control[DTC] controls torque and flux by restricting the flux and torque errors within respective hysteresis bands, and motor torque and flux are controlled by the stator voltage space vector using optimum inverter switching table. And the Current Error Compensation method is on the basis of compensating current difference between the induction motor and its numerical model, in which the identical stator voltage is supplied for both the actual motor and the model so that the gaps between stator currents of the two can be forced to decay to zero as time proceeds. Consequently, the rotor speed approaches to the model speed, namely, setting value and the system can control motor speed precisely. This paper proposes a new sensorless speed control of induction motor using DTC and Current Error Compensation, which requires neither shaft encoder, speed estimator nor PI controllers. And through computer simulation, confirm effectiveness of proposed method.

Disturbance Analysis in an Optical Disk Drive Using Model Based Disturbance Observer and Waterfall Technique (모델 기반 외란 관측기와 Waterfall 해석을 이용한 광 디스크 외란 분석)

  • Choi, Jin-Young;Lee, Kwang-Hyun;Jun, Hong-Gul;Lee, Moon-Noh;Yang, Hyun Seok;Park, No-Cheol;Park, Young-Pil
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.1 s.106
    • /
    • pp.40-49
    • /
    • 2006
  • A novel disturbance measurement method, model based disturbance observer (MBDO) for optical disk drives (ODDs), is proposed and the disturbance analysis using the proposed method is performed under various conditions. In ODDs, the quantitative and qualitative analysis for the generated disturbance during normal operation is very important to successful servo loop design. However, the disturbance measurement is difficult, and high precision measurement is necessary. Furthermore, the conventional disturbance measurement method using a LDV (laser Doppler vibrometer) has many difficulties in eccentricity direction due to the vertical movement of an optical disk. To solve this problem, the MBDO is proposed. First, the relationship between the servo loop for ODDs and the generated disturbance are briefly reviewed. Second, the principle of the MBDO is introduced, and the disturbance measurement results, which are measured by the MBDO and a LDV, are compared. In these experiments, test DVD-ROM disks are used to generate quantitative/qualitative disturbance. Then, the disturbance analysis under various conditions is performed using waterfall technique. This technique clearly shows the disturbance trend from the inner part of an optical disk to the outer part of it. Finally, the various disturbances measurement results are summarized and some remarks for it are commented.

A Study on the Speed Sensorless Vector Control for Induction Motor Adaptive Control Method using a High Frequency Boost Chopper of Hybrid Type Piezoelectric Transformer (하이브리드형 압전 변압기의 고주파 승압 초퍼를 이용한 적응제어기법 유도전동기 속도 센서리스 벡터제어에 관한 연구)

  • Hwang, Lark-Hoon;Na, Seung-Kwon;Kim, Yeong-Wook;Choi, Song-Shik
    • Journal of Advanced Navigation Technology
    • /
    • v.17 no.3
    • /
    • pp.332-345
    • /
    • 2013
  • In this paper, recently, it is described to the piezoelectric transformer technology develops, because it was have to favorable characteristics such as electromagnetic-noise free, compact size, higher efficiency, and superior power density, flux linkage, noiseless, etc. its resonance frequency was used to output waveform of a sine wave. A rotor speed identification method of induction motor based on the theory of flux model reference adaptive system(FMRAS). The estimator execute the rotor speed identification so that the vector control of the induction motor may be achieved. The improved auxiliary variable of the model are introduced to perform accurate rotor speed estimation. The control system is composed of the PI controller for speed control and the current controller using space voltage vector PWM techniuqe and DC-DC converter. High speed calculation and processing for vector control is carried out by digital signal one chip microprocessor. Validity of the proposed control method is verified through simulation and experimental results.

Recurrent Neural Network Based Distance Estimation for Indoor Localization in UWB Systems (UWB 시스템에서 실내 측위를 위한 순환 신경망 기반 거리 추정)

  • Jung, Tae-Yun;Jeong, Eui-Rim
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.4
    • /
    • pp.494-500
    • /
    • 2020
  • This paper proposes a new distance estimation technique for indoor localization in ultra wideband (UWB) systems. The proposed technique is based on recurrent neural network (RNN), one of the deep learning methods. The RNN is known to be useful to deal with time series data, and since UWB signals can be seen as a time series data, RNN is employed in this paper. Specifically, the transmitted UWB signal passes through IEEE802.15.4a indoor channel model, and from the received signal, the RNN regressor is trained to estimate the distance from the transmitter to the receiver. To verify the performance of the trained RNN regressor, new received UWB signals are used and the conventional threshold based technique is also compared. For the performance measure, root mean square error (RMSE) is assessed. According to the computer simulation results, the proposed distance estimator is always much better than the conventional technique in all signal-to-noise ratios and distances between the transmitter and the receiver.