• 제목/요약/키워드: ERW pipe

검색결과 19건 처리시간 0.037초

ERW 강관 용접부의 홈부식거동에 미치는 입열량의 영향 (The Effect of Heat Input on Grooving Corrosion Behavior in the Welds of Electric Resistance Welding Steel Pipe)

  • 이병우;이재식;박화순
    • 동력기계공학회지
    • /
    • 제11권3호
    • /
    • pp.41-46
    • /
    • 2007
  • The microstructure and electrochemical analysis of welds of electric resistance welding(ERW) pipe were investigated. The direction of metal flow line in HAZ of ERW pipe shifted to the inner(or outer) surface of pipe by plastic deformation during welding. The lowest heat input welds of ERW pipe was showed crack by liquid penetrant testing. Accelerated corrosion test by constant current density of 20mA/$cm^{2}$ developed groove at the welds of ERW pipe and the measured grooving factors were about $1.2{\sim}1.5$. Corrosion potential of base metal obtained by cyclic polarization in artificial sea water(3.5wt.% NaCl solution) was 100mV higher than that of weld metal of ERW pipe.

  • PDF

유속에 따른 ERW 탄소강관의 홈부식 특성에 관한 연구 (A study on the characteristic of the Groove corrosion of ERW carbon steel according to water speed)

  • 김재성;이영기;김용;이보영
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2009년 추계학술발표대회
    • /
    • pp.82-82
    • /
    • 2009
  • 강관은 물, 유류, 천연 가스 등을 운송하는 배관용 및 건물의 골조, 유압 및 공압 실린더, 가이드 레일 등 의 기계적 부품으로도 널리 사용되기도 한다. 이렇게 사용되는 강관의 70% 이상은 고주파 전기저항용접(High Frequency Electrical Resistance Welding,이하 ERW)으로 제조되고 있다. 아파트 등 실제 현장에서 ERW 강관에 흐르는 유체는 비드가 제거된 내면 부위에서 와류 (vortex)를 일으켜 기계적 침식(erosion)을 수반할 가능성이 있으며, 수격현상으로 인해 부식 부위에서 반복피로 하중을 받아 부식의 전파속도가 증가되어 최종적 으로 파손되는 경우도 예상할 수 있다. 이에 본 연구에서는 입열량을 달리하여 제조된 ERW 강관을 대상으로 강관 내부에서의 유속에 따라 홈부식 감수성에 미치는 영향을 확인하고자 하였다. 이를 위해 실제 사용 환경을 모사할 수 있는 장치를 제작하고 경계 조건을 선정하여 실험을 실시하였다. ERW 강관의 내부에서 유속이 빨라질 경우 부식속도는 증가를 하였고, 입열을 많이 받은 강관의 경우 부식속도가 감소하는 경향을 가졌다. 이러한 결과를 바탕으로 하여 ERW 강관에서 발생하고 있는 결함발생에 의한 피해를 극소화시킴으로서 안전하고 효율적인 관리에 기여하고자 한다.

  • PDF

탄소강관의 ERW 용접부 홈부식 손상에 관한 연구 (A Study on Grooving Corrosion at the Weld of a Low Carbon Steel Pipe Made by Electrical Resistance Welding)

  • 김용;이보영
    • Journal of Welding and Joining
    • /
    • 제22권5호
    • /
    • pp.58-64
    • /
    • 2004
  • Although leakage at a low carbon steel pipe made by electrical resistance welding (ERW) was reported due to grooving corrosion, the cause for the corrosion has not yet been cleared. In order to clarify the main cause, failure analysis on the leaked pipe was carried out, followed by metallographic investigation and corrosion test for the various ERW pipe made with different welding heat input. The microstructure, particularly inclusion content, of the weldment is dependant on the welding heat input applied. For an improper low heat input, the amount of inclusion at the weld was high. High inclusion content accelerated grooving corrosion at the weld. It is therefore that welding heat input should be controlled based on the carbon content of the pipe in order to improve the corrosion resistance of the ERW pipe.

ERW강관에서 홈부식의 가속화에 미치는 유동의 영향에 관한 연구 (Study on the Effects of Flows on the Acceleration of the Grooving Corrosion in the ERW Pipe)

  • 김재성;김용;이보영
    • Journal of Welding and Joining
    • /
    • 제26권4호
    • /
    • pp.85-91
    • /
    • 2008
  • The grooving corrosion is caused mainly by the different microstructures between the matrix and weld which is formed during the rapid heating and cooling cycle in welding. By this localized corrosion reaction of pipes, it evolves economic problems such as the early damage of industrial facilities and pipe lines of apartment, and water pollution. So lots of researches were carried out already about grooving corrosion mechanism of ERW carbon steel pipe but there is seldom study for water hammer happened by fluid phenomenon and corrosion rate by flow velocity. In this study, the analysis based on hydrodynamic and fracture mechanics was carried out. ANSYS, FLUENT and STAR-CD were used for confirmation of flow phenomenon and stress on the pipe. As the results, fatigue failure is able to be happened by water hammer and grooving corrosion rate is increased cause by turbulent. Grooving corrosion is happened on the pipe, then friction loss of fluid is occurred from corroded part. Erosion can be happened enough in corroded region of microscopic size that wear "V" form. Also pipe is able to be damaged by water hammer effects because of corroded region is general acting as a notch effects. Corrosion depth was more than half of total thickness, it can be damaged from water hammer pressure.

천연가스배관용 ERW강관 (ERW Steel Pipe for Natural Gas Pipeline)

  • 김우식
    • Journal of Welding and Joining
    • /
    • 제19권3호
    • /
    • pp.261-266
    • /
    • 2001
  • 본 고에서는 배관 재료일반과 용접공정에 대해 ERW강관을 중심으로 알아보았다. 국내 가스배관에서 ERW강관이 사용되는 것은 외경 24인치 이하 배관이며 그 이상 크기의 배관에서는 SAW강관이 사용된다. 배관의 안전성 및 건전성 확보를 위하여 가장 주의를 가지고 평가해야 할 대상은 손상 및 결함의 발생 비율이 가장 높은 심용접부 및 원주용접부 이다. 이들 배관 용접부의 건전성 확보를 위해서는 모재와는 다른 특성을 지닌 용접부위에서 다양한 금속학적, 역학적 인자들의 영향에 대한 정확한 분석과 평가를 실시하여야 한다. 용접부위 품질확보는 가스배관의 안전과 안정적운용에 반드시 필요한 부분이다.

  • PDF

경도분포 및 역설계 기법을 활용한 ERW 파이프 열영향부(HAZ) 물성 예측 연구 (Prediction Study of Heat-Affected Zone (HAZ) Properties in ERW Pipes using Hardness Distribution and Reverse Engineering Techniques)

  • 이상민;현대일;홍석무
    • 소성∙가공
    • /
    • 제32권6호
    • /
    • pp.321-328
    • /
    • 2023
  • To ensure driver safety, high-strength steel pipes are utilized in the chassis and internal structures design of automobiles. ERW(electric resistance welding) pipes, fabricated through welding at joints using electrical resistance, form a Heat-Affected Zone (HAZ) during the welding process. Due to characteristics such as increased hardness and reduced ductility compared to the base material, HAZ poses challenges in finite element analysis (FEA) for pipe shapes. In this study, for FEA considering HAZ properties, mechanical properties were measured through uniaxial tensile testing and digital image correlation (DIC) techniques after specimen fabrication. These measurements were validated using reverse engineering methods. Furthermore, hardness measurements and gaussian functions were employed to ascertain the hardness distribution within the HAZ, serving as a basis for subdividing the HAZ and modeling the pipe shape. To validate the effectiveness of the HAZ modeling approach, models were interpreted incorporating only base material properties and models incorporating average-calculated HAZ properties. Comparative analysis was performed, revealing that the model subdividing the HAZ based on hardness measurements closely approximated experimental values. This validation offered a methodology for HAZ modeling in FEA.

고주파 전기저항용접부 강관에서의 피로수명의 확률론적 평가 (Probabilistic Evaluation of Fatigue Life in High Frequency Electric Resistance Welded Joint of the Pipe)

  • 서영범;김충명;김철수;김정규
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.400-405
    • /
    • 2004
  • In this study, the optimal welding condition of the input power was selected experimentally through the ERW simulator, which is equal to welding status of ERW part in pipe. This condition is the input power 250kW in the heat treatment of the $900^{\circ}C$ normalizing derived from the nondestructive technique and impact energy. In order to evaluate the variation of the fatigue life in the pipe, fatigue surface crack growth test of base and optimal welded metal were performed statistically. As stress intensity factor range (${\Delta}K_s$) increases, the fatigue crack propagation rate (da/aN) of the base metal is faster than that of the welded joint. The variation of the fatigue life in the ERW pipe was estimated statistically using Monte-Carlo simulation with the standard deviation of material constants (C and m) of the paris law in the specimen.

  • PDF

탄소강관의 ERW 용접부 손상에 관한 연구 (Study on defect of ERW weldment of carbon steel pipes)

  • 이보영;이재윤;이성호
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.666-669
    • /
    • 2003
  • Electrical resistance welded steel pipes showed leakage failure within 5 years usage. Microstructural analysis and hardness test were carried out, whose results gave no evidences about the reason of failure. For the analysis, 3 kinds of ERW pipes with different heat inputs were produced. Microstructural differences according to the different heat inputs were detected. Differences of the amount of inclusion in the weld line were observed. It is concluded that the difference of heat input during ERW pipe production caused the microstructural changes which resulted in the leakage failure.

  • PDF

전기저항 용접강관의 홈부식에 미치는 유동 해석 (Analysis of Flow on Grooving Corrosion at the Weld of a Carbon Steel pipe made by Electrical Resistance Welding)

  • 김용;장혁;류덕희;김재성;이보영;부준홍
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.1-6
    • /
    • 2004
  • Lots of researches were gone already about grooving corrosion mechanism of ERW carbon steel pipe. But there is seldom study for water hammer happened by fluid and acceleration of corrosion rate by incresed flow velocity. Therefore, in this study carried out the analysis based on hydrodynamic and fracture mechanics. Analyzed stress that act on a pipe using ANSYS as a program, and also FLUENT and STAR-CD were used for flow phenomenon confirmation. As the result, fatigue failure is happened by water hammer and corrosion rate was increased because of turbulent flow.

  • PDF

라인파이프용 고강도 열연강판의 기계적 성질 (Mechanical Properties of High Strength Hot Strips For Line Pipe Application)

  • 김문수;김준성;강기봉;노광섭
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1999년도 제3회 압연심포지엄 논문집 압연기술의 미래개척 (Exploitation of Future Rolling Technologies)
    • /
    • pp.383-389
    • /
    • 1999
  • The purpose of this study was to investigate the effects of alloying and rolling condition on the mechanical properties and to develop high strength line pipe steels with good toughness. Tests were carried out by the laboratory experiments followed by mill trials and mass production. It was found that a small addition of microalloying elements, such as Nb, V with Mo or Ti remarkably increased the strength and toughness of hot strips. The optimum condition of thermomechanical rolling on low carbon microalloyed steel improved the toughness through the formation of a fine and uniform microstructure. Based on this mill trials following the fundamental research, the production technology of line pipe steels, grade X70∼X100 with high toughness, has been established. These grade steels exhibit excellent low temperature toughness (vTs= under -80$^{\circ}C$) and sufficient strength in both the base metal and the ERW seam weld position, respectively.

  • PDF