• Title/Summary/Keyword: ERK1/2 protein

Search Result 588, Processing Time 0.019 seconds

Effects of Curcumin, the Active Ingredient of Turmeric(Curcuma longa), on Regulation of Glutamate-induced Toxicity and Activation of the Mitogen-activated Protein Kinase Phosphatase-1 (MKP-1) in HT22 Neuronal Cell

  • Lee, Sang-Hyun;Yun, Young-Gab
    • Natural Product Sciences
    • /
    • v.15 no.1
    • /
    • pp.32-36
    • /
    • 2009
  • Glutamate causes neurotoxicity through formation of reactive oxygen species and activation of mitogen-activated protein kinase (MAPK) pathways. MAPK phosphatase-1 (MKP-1) is one of the phosphatases responsible for dephosphorylation/deactivation of three MAPK families: the extracellular signal-regulated kinase-1/2 (ERK-1/2), the c-Jun N-terminal kinase-1/2 (JNK-1/2), and the p38 MAPK. In this report, the potential involvement of MKP-1 in neuroprotective effects of curcumin, the active ingredient of turmeric (Curcuma longa), was examined using HT22 cells. Glutamate caused cell death and activation of ERK-1/2 but not p38 MAPK or JNK-1/2. Blockage of ERK-1/2 by its inhibitor protected HT22 cells against glutamate-induced toxicity. Curcumin attenuated glutamate-induced cell death and ERK-1/2 activation. Interestingly, curcumin induced MKP-1 activation. In HT22 cells transiently transfected with small interfering RNA against MKP-1, curcumin failed to inhibit glutamate-induced ERK-1/2 activation and to protect HT22 cells from glutamate-induced toxicity. These results suggest that curcumin can attenuate glutamate-induced neurotoxicity by activating MKP-1 which acts as the negative regulator of ERK-1/2. This novel pathway may contribute to and explain at least one of the neuroprotective actions of curcumin.

Regulation of ERK1/2 by the C. elegans Muscarinic Acetylcholine Receptor GAR-3 in Chinese Hamster Ovary Cells

  • Kim, Seungwoo;Shin, Youngmi;Shin, Youngju;Park, Yang-Seo;Cho, Nam Jeong
    • Molecules and Cells
    • /
    • v.25 no.4
    • /
    • pp.504-509
    • /
    • 2008
  • Three G-protein-linked acetylcholine receptors (GARs) exist in the nematode C. elegans. GAR-3 is pharmacologically most similar to mammalian muscarinic acetylcholine receptors (mAChRs). We observed that carbachol stimulated ERK1/2 activation in Chinese hamster ovary (CHO) cells stably expressing GAR-3b, the predominant alternatively spliced isoform of GAR-3. This effect was substantially reduced by the phospholipase C (PLC) inhibitor U73122 and the protein kinase C (PKC) inhibitor GF109203X, implying that PLC and PKC are involved in this process. On the other hand, GAR-3b-mediated ERK1/2 activation was inhibited by treatment with forskolin, an adenylate cyclase (AC) activator. This inhibitory effect was blocked by H89, an inhibitor of cAMP-dependent protein kinase A (PKA). These results suggest that GAR-3b-mediated ERK1/2 activation is negatively regulated by cAMP through PKA. Together our data show that GAR-3b mediates ERK1/2 activation in CHO cells and that GAR-3b can couple to both stimulatory and inhibitory pathways to modulate ERK1/2.

RGS Protein Specificity Towards Gq- and Gi/o-Mediated ERK 1/2 and Akt Activation, in vitro

  • Anger, Thomas;Klintworth, Nils;Stumpf, Christian;Daniel, Werner G.;Mende, Ulrike;Garlichs, Christoph D.
    • BMB Reports
    • /
    • v.40 no.6
    • /
    • pp.899-910
    • /
    • 2007
  • Extracellular Regulated Kinases (ERK) and Protein Kinase B (Akt) are intermediaries in relaying extracellular growth signals to intracellular targets. Each pathway can become activated upon stimulation of G protein-coupled receptors mediated by $G_q$ and $G_{i/o}$ proteins subjected to regulation by RGS proteins. The goal of the study was to delineate the specificity in which cardiac RGS proteins modulate $G_{q^-}$ and $G_{i/o}$-induced ERK and Akt phosphorylation. To isolate $G_{q^-}$ and $G_{i/o}$-mediated effects, we exclusively expressed muscarinic $M_2$ or $M_3$ receptors in COS-7 cells. Western blot analyses demonstrated increase of phosphorylation of ERK 1.7-/3.3-fold and Akt 2.4-/6-fold in $M_{2^-}/M_{3^-}$ expressing cells through carbachol stimulation. In co-expressions, $M_3/G_q$-induced activation of Akt was exclusively blunted through RGS3s/RGS3, whereas activation of ERK was inhibited additionally through RGS2/RGS5. $M_2/G_{i/o}$ induced Akt activation was inhibited by all RGS proteins tested. RGS2 had no effect on $M_2/G_{i/o}$-induced ERK activation. The high degree of specificity in RGS proteins-depending modulation of $G_{q^-}$ and $G_{i/o}$-mediated ERK and Akt activation in the muscarinic network cannot merely be attributed exclusively to RGS protein selectivity towards $G_q$ or $G_{i/o}$ proteins. Counter-regulatory mechanisms and inter-signaling cross-talk may alter the sensitivity of GPCR-induced ERK and Akt activation to RGS protein regulation.

Benzidine Induces Epithelial-Mesenchymal Transition of Human Bladder Cancer Cells through Activation of ERK5 Pathway

  • Sun, Xin;Zhang, Tao;Deng, Qifei;Zhou, Qirui;Sun, Xianchao;Li, Enlai;Yu, Dexin;Zhong, Caiyun
    • Molecules and Cells
    • /
    • v.41 no.3
    • /
    • pp.188-197
    • /
    • 2018
  • Benzidine, a known carcinogen, is closely associated with the development of bladder cancer (BC). Epithelial-mesenchymal transition (EMT) is a critical pathophysiological process in BC progression. The underlying molecular mechanisms of mitogen-activated protein kinase (MAPK) pathway, especially extracellular regulated protein kinases 5 (ERK5), in regulating benzidine-induced EMT remains unclarified. Hence, two human bladder cell lines, T24 and EJ, were utilized in our study. Briefly, cell migration was assessed by wound healing assay, and cell invasion was determined by Transwell assay. Quantitative PCR and western blot were utilized to determine both gene expressions as well as protein levels of EMT and MAPK, respectively. Small interfering RNA (siRNA) was transfected to further determine ERK5 function. As a result, the migration and invasion abilities were enhanced, epithelial marker expression was decreased while mesenchymal marker expression was increased in human BC cell lines. Meanwhile, benzidine administration led to activation of ERK5 and activator protein 1 (AP-1) proteins, without effective stimulation of the Jun N-terminal kinase (JNK) or p38 pathways. Moreover, Benzidine-induced EMT and ERK5 activation were completely suppressed by XMD8-92 and siRNAs specific to ERK5. Of note, ERK1/2 was activated in benzidine-treated T24 cells, while benzidine-induced EMT could not be reversed by U0126, an ERK1/2 inhibitor, as indicated by further study. Collectively, our findings revealed that ERK5-mediated EMT was critically involved in benzidine-correlated BC progression, indicating the therapeutic significance of ERK5 in benzidine-related BC.

Bone Morphogenetic Protein 2-induced MAPKs Activation Is Independent of the Smad1/5 Activation

  • Jun, Ji-Hae;Ryoo, Hyun-Mo;Woo, Kyung-Mi;Kim, Gwan-Shik;Baek, Jeong-Hwa
    • International Journal of Oral Biology
    • /
    • v.34 no.2
    • /
    • pp.115-121
    • /
    • 2009
  • Bone morphogenetic protein (BMP) 2 is a potent osteogenic factor. Although both Smad1/5 and mitogenactivated protein kinases (MAPKs) are activated by BMP2, the hierarchical relationship between them is unclear. In this study, we examined if BMP2-stimulated MAPK activation is regulated by Smad1/5 or vice versa. When C2C12 cells were treated with BMP2, the activation of extracellular signal-regulated kinase (ERK), p38 MAPK and c-Jun-N-terminal kinase was evident within 5 min. The knockdown of both Smad1 and Smad5 by small interfering RNA did not affect the activation of these MAPKs. In addition, neither the overexpression of Smad1 nor Smad5 induced ERK activation. When ERK activation was induced by constitutively active MEK1 expression, the protein level and activation of Smad1 increased. Furthermore, the inhibition of constitutively active BMP receptor type IB-induced ERK activation significantly suppressed Smad1 activation. These results indicate that Smad1/5 activation is not necessary for BMP2-induced MAPK activation and also that ERK positively regulates Smad1 activation.

Regulations of Reversal of Senescence by PKC Isozymes in Response to 12-O-Tetradecanoylphorbol-13-Acetate via Nuclear Translocation of pErk1/2

  • Lee, Yun Yeong;Ryu, Min Sook;Kim, Hong Seok;Suganuma, Masami;Song, Kye Yong;Lim, In Kyoung
    • Molecules and Cells
    • /
    • v.39 no.3
    • /
    • pp.266-279
    • /
    • 2016
  • The mechanism by which 12-O-tetradecanoylphorbol-13-acetate (TPA) bypasses cellular senescence was investigated using human diploid fibroblast (HDF) cell replicative senescence as a model. Upon TPA treatment, protein kinase C (PKC) ${\alpha}$ and $PKC{\beta}1$ exerted differential effects on the nuclear translocation of cytoplasmic pErk1/2, a protein which maintains senescence. $PKC{\alpha}$ accompanied pErk1/2 to the nucleus after freeing it from $PEA-15pS^{104}$ via $PKC{\beta}1$ and then was rapidly ubiquitinated and degraded within the nucleus. Mitogen-activated protein kinase docking motif and kinase activity of $PKC{\alpha}$ were both required for pErk1/2 transport to the nucleus. Repetitive exposure of mouse skin to TPA downregulated $PKC{\alpha}$ expression and increased epidermal and hair follicle cell proliferation. Thus, $PKC{\alpha}$ downregulation is accompanied by in vivo cell proliferation, as evidenced in 7, 12-dimethylbenz(a)anthracene (DMBA)-TPA-mediated carcinogenesis. The ability of TPA to reverse senescence was further demonstrated in old HDF cells using RNA-sequencing analyses in which TPA-induced nuclear $PKC{\alpha}$ degradation freed nuclear pErk1/2 to induce cell proliferation and facilitated the recovery of mitochondrial energy metabolism. Our data indicate that TPA-induced senescence reversal and carcinogenesis promotion share the same molecular pathway. Loss of $PKC{\alpha}$ expression following TPA treatment reduces pErk1/2-activated SP1 biding to the $p21^{WAF1}$ gene promoter, thus preventing senescence onset and overcoming G1/S cell cycle arrest in senescent cells.

Constitutively active Ras negatively regulates Erk MAP kinase through induction of MAP kinase phosphatase 3 (MKP3) in NIH3T3 cells

  • Park, Young Jae;Lee, Jong Min;Shin, Soon Young;Kim, Young Ho
    • BMB Reports
    • /
    • v.47 no.12
    • /
    • pp.685-690
    • /
    • 2014
  • The Ras/Raf/MEK/Erk signaling pathway is important for regulation of cell growth, proliferation, differentiation, survival, and apoptosis in response to a variety of extracellular stimuli. Lack of Erk MAPK activation is observed in several cancer cells despite active activation of Ras. However, little is known about the modulation of Erk1/2 activity by active Ras. Here, we show that overexpression of active H-Ras (H-RasG12R) in NIH3T3 fibroblasts impaired FGF2-induced Erk1/2 phosphorylation, as compared to wild-type cells. Northern blot analysis revealed that prolonged expression of active Ras increased MAP kinase phosphatase 3 (MKP3) mRNA expression, a negative regulator of Erk MAPK. Inhibition of the phosphatidylinositol 3-kinase (PI3K)/Akt pathway abrogated active Ras-induced up-regulation of MKP3 expression, leading to the rescue of Erk1/2 phosphorylation. Our results demonstrated that the Ras/Raf/MEK/Erk signaling cascade is negatively regulated by the PI3K/Aktdependent transcriptional activation of the MKP3 gene.

Activation of Vestibular Neurons Projecting to Autonomic Brain Stem Nuclei Following Acute Hypotension in Rats

  • Choi, Dong-Ok;Yon, Chon-Il;Choi, Myoung-Ae;Park, Byung-Rim;Kim, Min-Sun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.8 no.4
    • /
    • pp.181-185
    • /
    • 2004
  • Extracellular regulated protein kinase1/2 (pERK1/2) is one of the major regulatory factors for transcription of the c-fos oncogene in neurons. The purpose of this study was to evaluate the expression of phosphorylated ERK1/2 within the vestibular nuclei (VN) of rats following acute arterial hypotension. Following the acute arterial hypotension induced by rapid hemorrhage, a significant number of pERK1/2-immunoreactive neurons appeared bilaterally in the caudal aspect of the medial and inferior VN. No labeling of pERK1/2 was observed in the lateral VN. The peak expression of pERK1/2 in these nuclei occurred within 5 min after hemorrhage. However, in bilaterally labyrinthectomized rats, the appearance of pERK1/2-immunoreactive neurons was eliminated in the VN. Western blot confirmed the effect of bilateral labyrinthectomy on pERK1/2 protein expression in the medial vestibular nucleus 5 min after hemorrhage. These results suggest that, following acute hypotension, afferent signals from the peripheral vestibular receptors are required for activation of ERK 1/2 in the VN.

Clostridium difficile Toxin A Inhibits the Kinase Activity of Extracellular Signal-Related Kinases 1 and 2 Through Direct Binding

  • Seok, Heon;Nam, Hyo-Jung;Nam, Seung-Taek;Kang, Jin-Ku;Kim, Sung-Kuk;Chang, Jong-Soo;Ha, Eun-Mi;Park, Young-Joo;Kim, Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.2
    • /
    • pp.170-175
    • /
    • 2012
  • Clostridium difficile toxin A glucosylates Rho family proteins, resulting in actin filament disaggregation and cell rounding in cultured colonocytes. Given that the cellular toxicity of toxin A is dependent on its receptor binding and subsequent entry into the cell, we herein sought to identify additional colonocyte proteins that might bind to toxin A following its internalization. Our results revealed that toxin A interacted with ERK1 and ERK2 in two human colonocyte cell lines (NCM460 and HT29). A GST-pulldown assay also showed that toxin A can directly bind to ERK1 and ERK2. In NCM460 cells exposed to PMA (an ERK1/2 activator), the phosphorylation of ERK1/2 did not affect the interaction between toxin A and ERK1/2. However, an in vitro kinase assay showed that the direct binding of toxin A to ERK1 or ERK2 inhibited their kinase activities. These results suggest a new molecular mechanism for the cellular toxicity seen in cells exposed to toxin A.

The Role of Heat Shock Protein 25 in Radiation Resistance

  • Lee Yoon-Jin;Lee Su-Jae;Bae Sangwoo;Lee Yun-Sil
    • Environmental Mutagens and Carcinogens
    • /
    • v.25 no.2
    • /
    • pp.51-59
    • /
    • 2005
  • Overexpression of HSP25 delayed cell growth, increased the level of $p21^{waf}$, reduced the levels of cyclin D1, cylcin A and cdc2, and induced radioresistance in L929 cells. We demonstrated that extracellular regulated kinase (ERK) and MAP kinase/ERK kinase (MEK) expressions as well as their activation (phospho-forms) were inhibited by hsp25 overexpression. To confirm the relationship between ERK1/2 and hsp25-mediated radioresistance, ERK1 or ERK2 cDNA was transiently transfected into the hsp25 overexpressed cells and their radioresistance was examined. HSP25-mediated radioresistance was abolished by overexpression of ERK2, but not by overexpression of ERK1. Alteration of cell cycle distribution and cell cycle related protein expressions (cyclin D, cyclin A and cdc2) by hsp25 overexpression were also recovered by ERK2 cDNA transfection. Increase in Bc1-2 protein by hsp25 gene transfection was also reduced by subsequent ERK2 cDNA-transfection. In addition, HSP25 overexpression reduced reactive oxygen species (ROS) and increased expression of manganese superoxide dismutase (MnSOD) gene. Increased activation of NF-kB (IkB degradation) was also found in hsp25-overexpressed cells. Moreover, transfection of hsp25 antisense gene abrogated all the HSP25-mediated phenomena. To further elucidate the exact relationship between MnSOD induction and NF-kB activation, dominant negative $I-kB\alpha(I-kB\alpha-DN)$ construction was transfected to HSP25 overexpressed cells. $I-kB\alpha-DN$ inhibited HSP25 mediated MnSOD gene expression. In addition, HSP25 mediated radioresistance was blocked by $I-kB\alpha-DN$ transfection. Blockage of MnSOD with antisense oligonucleotides in HSP25 overexpressed cells, prevented apoptosis and returned the ERK1/2 activation to the control level. From the above results, we suggest for the first time that reduced oxidative damage by HSP25 was due to MnSOD-mediated down regulation of ERK1/2.

  • PDF