• Title/Summary/Keyword: EPR test

Search Result 38, Processing Time 0.021 seconds

Partial Discharge Detection and Statistic Value Calculation of Power Cable Using Data Acquisition System (데이터 취득 시스템을 이용한 전력케이블의 부분방전 검출과 통계량 계산)

  • 조경순
    • Journal of the Korea Computer Industry Society
    • /
    • v.3 no.12
    • /
    • pp.1651-1658
    • /
    • 2002
  • Recently power cable used generally in Korea, because installation is very simple and it has high stability. It confirms to the requirements of IEEE std. 404-1993 by factory testing, but many problems of insulated cable systems are caused by internal defects of the joint part which have to be mounted ensile. Especially, fault rates are arise from impurities or voids. A suitable solution for a monitoring of power cable during the after-laying test and service is partial discharge detection. The artificial defects between cable joint(EPR) and insulator(XLPE) interface are considered in this research to investigating the partial discharge characteristics. ${\varphi}$-q-n properties were detected using data acquisition system and Maximum charge($q_{max}$), repetition rate(${\={n}$), average charge(${\={q}$), Unbalance rate of ${\={n}$ and ${\={q}$ are calculated in order to analysis partial discharge properties quantitatively from this statistic value.

  • PDF

Pattern Analysis of the Defects within the Cable Insulation for UHV Underground Transmission Using Partial Discharge (부분방전을 이용한 초고압 지중 송전 절연 케이블 내부 결함의 패턴분석)

  • Park, Jae-Hwa;Lee, Gwang-Yeol;Chae, Seok;Oh, Young-Seok;Kim, Hak-Sung
    • Proceedings of the KIPE Conference
    • /
    • 1998.07a
    • /
    • pp.175-179
    • /
    • 1998
  • The insulation of cable which used for Ultra-High Voltage(UHV) underground power transmission requires excellent insulation capability for high voltage. The typical insulation materials are used XLPE, EPR, etc, but insulation efficiency of these is affected by void or alien substances, existed at the inside of insulators. In this paper, the partial discharge patterns of the defects within insulation cable are observed and analyzed. In this test, void, fiber and metal inclusions which possibly exist in cables, are simulated and investigated the patterns of partial discharges for each models Also the relations between calculated field strength and the insulation breakdown voltage. The experiment shows distinct partial discharge patterns in accordance with the kinds of defects within Insulation cable.

  • PDF

Degradation Degree Evaluation of Heat Resisting Steel by Electrochemical Technique Part 2 : Effect of Testing Conditions on Evaluation Value of Degradation Degree and Changes of Mechaical Properties (전기화학적 방법에 의한 내열강의 열화도측정 제2보 : 열화도측정치에 미치는 측정조건들의 영향과 기계적성질 변화에 대해서)

  • 정희돈;권영각;장래웅
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.2
    • /
    • pp.300-312
    • /
    • 1993
  • The material deterioration of service-exposed boiler tube steels in fossil power plant was evaluated by using the electrochemical technique namely, modified electrochemical potentiokinetic reactivation(EPR). It was focused that the passivation of Mo$_{6}$C carbide which governs the mechanical properties of Mo alloyed steels did not occur even in the passivity region of steel in sodium molybdate solution and the reactivation peak current (Ip) observed as the result of non-passivation indicating the precipitation of Mo$_{6}$C carbides. To obtain the optimal test conditions for the field test by using the specially designed electrochemical cell, the effects of scan rate, the surface roughness and the pH of electrolyte on Ip value were also investigated. Furthermore, the change of mechanical properties occurred during the long time exposure at high temperature was evlauated quantitatively by small punch(SP) tests and micro hardness test taking account of the metallurgical changes. It is known that reactivation peak current (Ip) has a good relationship with Larson-Miller Parameter(LMP) which represents the information about material deterioration occurred at high temperature environment. In addition it was possible to estimate the ductile-brittle transition temperature (DBTT) by means of the SP test. The Sp test could be, therefore, suggested as a reliable test method for evaluating the material degradation of boiler tube steels. From the good correaltion between the SP DBTT and Ip values shown in this study, it was knows that the change of mechanical properties could be evaluated non-destructively by measurring only Ip values.ues.

Stress Corrosion Cracking Characteristics of Shot-peened Stainless Steel Containing Ti (Shot-peening 표면처리된 Ti 함유 스테인리스강의 응력균열부식)

  • Choe Han-Cheol
    • Journal of the Korean institute of surface engineering
    • /
    • v.37 no.6
    • /
    • pp.350-359
    • /
    • 2004
  • Stress corrosion cracking(SCC) characteristics of shot-peened stainless steel containing Ti (0.09 wt%-0.92 wt%) fabricated by the vacuum furnace were investigated using SCC tester and potentiostat. The homogenization and the sensitization treatment were carried out at $1050^{\circ}C$ for 1hr and $650^{\circ}C$ for 5 hr. The samples for SCC were shot-peened using $\Phi$0.6 mm steel ball for 4 min and 10 min. Intergranular and pitting corrosion characteristics were investigated by using EPR and CPPT. SCC test was carried out at the condition of$ 288^{\circ}C$, 90 kgf pressure, water with 8 ppm dissolved oxygen, and $8.3xl0^{-7}$/s strain rate. After the corrosion and see test, the surface of the tested specimen was observed by the optical microscope, TEM and SEM. Specimen with Ti/C ratio of 6.14 showed high tensile strength at the sensitization treatment. The tensile strength decreased with the increase of the Ti/C ratio. Pitting and intergranular corrosion resistance increased with the increase of Ti/C ratio. Stress corrosion cracking strength of shot-peened specimen was higher than that of non shot- peened specimen. Stress corrosion cracking strength decreased with the increase of the Ti/C ratio.

Optimization of bacterial urinary mutagenicity test (뇨 돌연변이 유발성 시험법 정립)

  • Jang, Mi;Shin, Han-Jae;Park, Chul-Hoon;Sohn, Hyung-Ok;Hyun, Hak-Chul
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.37 no.1
    • /
    • pp.18-24
    • /
    • 2015
  • Urinary mutagenicity is widely recognized as a useful biomarker for the assessment of mutagen exposure level in human. In this study, we optimized the several parameters affecting the activity of Urinary mutagenicity using highly sensitive mutation test(microsuspension assay) instead of the conventional Ames test. First of all, we chose YG1024 as a highly sensitive strain from three str ains of Salmonella typhimurium(TA98, TA100, YG1024) using r epr esentative mutation substances, such as Benzo[a]pyrene, 2-Aminonaphthalene, 2-amino-3-methyl-9H-pyrido[2,3-b]indole($MeA{\alpha}C$) and cigarette total particulate matter(TPM). And we established the several kinds of test conditions such as number of bacter ia, concentr ation of metabolic activation system and incubation time for the most sensitive reaction. Also, we optimized efficient pre-treatment method using commercial C18 column. As a r esults, this method was shown a aver age of 94 % recovery value and 13 % relative standard deviation. When we compared the Urinary mutagenicity between several participants, we confirmed that compar ative measurements were possible for different levels of urine mutagenicity. In conclusion, the optimized highly sensitive mutation test to measure the Urinary mutagenicity may be useful in biological monitoring of mutagen exposure level.

  • PDF

Effects of Thermal Oxidation on Corrosion Resistance of Stainless Steels for Muffler Materials (머플러용 스테인리스강의 내식성에 미치는 열적 산화의 영향)

  • Kim, Dongwoo;Kim, Heesan
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.10
    • /
    • pp.652-661
    • /
    • 2008
  • Reduction of NOx in emission gas, improvement of engine efficiency, and extension of warranty period has made demands for developing materials more corrosively resistant to the inner-muffler environments or predicting the lifetime of materials used in muffler more precisely. The corrosion inside muffler has been explained with condensate corrosion mainly though thermal oxidation experiences prior to condensate corrosion. Hence, the aim of this study is to describe how the thermal oxidation affects the corrosion of stainless steel exposed to the inner-muffler environments. Auger electron spectroscopy and electrochemical tests were employed to analyze oxide scale and to evaluate corrosion resistance, respectively. Thermal oxidation has different role of condensate corrosion depending on the temperature: inhibiting condensate corrosion below $380^{\circ}C$ and enhancing condensate corrosion above $380^{\circ}C$. The low temperature oxidation causes to form compact oxide layer functioning a barrier for penetrating condensate into a matrix. Although though thermal oxidation caused chromium-depleted layer between oxide layer and matrix, the enhancement of the condensate corrosion in high temperature oxidation resulted from corrosion-induced crevice formed by oxide scale rather than corrosion in chromium-depleted layer. It was proved by aids of anodic polarization tests and measurements of pitting corrosion potentials. By the study, the role of high temperature oxidation layer affecting the condensate corrosion of stainless steels used as muffler materials was well understood.

Effect of Manufacturing Process on the Corrosion Properties of 304L Stainless Steel Pipe with 8-inch Diameter (8인치 직경의 304L 스테인리스강관의 부식특성에 미치는 제작공정의 영향)

  • Kim, K.T.;Hur, S.Y.;Chang, H.Y.;Kim, Y.S.
    • Corrosion Science and Technology
    • /
    • v.17 no.6
    • /
    • pp.279-286
    • /
    • 2018
  • Austenitic stainless steels used in nuclear power plants mainly use pipes made of seamless pipes, which depend on imports. The manufacturing process and high cost are some of the problems associated with seamless pipes. Therefore, in this study, the corrosion characteristics of the seamless pipe and the SAW pipe were assessed to determine the safety and reliability of the SAW pipe in a bid to replace the seamless pipe. Microstructure was analyzed using an optical microscope and the degree of hardness was measured using a Rockwell B scale. Intergranular corrosion resistance was evaluated by ASTM A262 Practice A, C, and E methods. The degree of sensitization was determined using a DL-EPR test. Anodic polarization test was performed in deaerated 1% NaCl solution at $30^{\circ}C$ and the U-bend method was used to evaluate the SCC resistance in 0.01 M $Na_2S_4O_6$ at $340^{\circ}C$ and 40% NaOH solution at $290^{\circ}C$. Weld metal of the SAW pipe specimen showed relatively high degree of sensitization and intergranular corrosion rate. However, annealing to SAW pipes improved the corrosion properties in comparison to that of the seamless pipe.

Effect of Heat Treatment on the Corrosion Properties of Seamless 304L Stainless Steel Pipe (이음매 없는 304L 스테인리스강관의 부식특성에 미치는 열처리의 영향)

  • Kim, K.T.;Um, S.B.;Kim, Y.S.
    • Corrosion Science and Technology
    • /
    • v.16 no.6
    • /
    • pp.305-316
    • /
    • 2017
  • Austenitic stainless steels have been widely used for various systems of nuclear power plants. Among these stainless steels, small pipes with diameter less than 14 inch have been produced in the form of seamless pipe. Annealing and cooling process during the manufacturing process can affect corrosion properties of seamless stainless steels. Therefore, 12 inch-diameter of as-received 304L stainless steel pipe was annealed and aged in this study. Intergranular corrosion resistance was evaluated by ASTM A262 Practice A, C, and E methods. The degree of sensitization was determined using a DL-EPR test. U-bend method in an autoclave was used to evaluate the SCC resistance in 0.01 M $Na_2S_4O_6$ or 40% NaOH solution at $340^{\circ}C$. As-received specimen showed relatively high degree of sensitization and intergranular corrosion rate. Carbon segregation was also observed near grain boundaries. Annealing treatment could give the dissolution of segregated carbon into the matrix. Aging treatment could induce segregation of carbon and finally form carbides. Microstructural analysis confirmed that high intergranular corrosion rate of the as-received seamless pipe was due to micro-galvanic corrosion between carbon segregation and grains.