• Title/Summary/Keyword: EPR/Alanine Dosimetry

Search Result 5, Processing Time 0.022 seconds

Research on the use of Therapeutic Linear accelerator Quality Control using EPR/alanine Dosimeter (EPR/알라닌 선량계를 이용한 치료용 선형가속기 정도관리 활용 연구)

  • Yoon-Ha Kim;Hyo-Jin Kim;Yeong-Rok Kang;Dong-Yeon Lee
    • Journal of the Korean Society of Radiology
    • /
    • v.18 no.3
    • /
    • pp.239-248
    • /
    • 2024
  • Radiation therapy uses high energy, which can have side effects on the human body. Therefore, it is important to ensure that the appropriate dose is set for irradiation and to have confidence in the radiation produced by the generator. The EPR/Alanine dosimetry system is characterized by water equivalence, dose response linearity, and low fading, which makes it useful for quality control of radiation therapy equipment. In this study, we compared the signal and dose response curves of EPR/Alanine dosimetry by mass of alanine using 6 MV energy of a LINAC. An alanine dosimeter and EPR spectrometer from Burker, and a LINAC from Elekta, were used. A dose response curve and a 1st order regression equation were constructed from the irradiated dose and the EPR signal from the alanine dosimeter. We compared the signal magnitude and dose response curve with mass and checked the confidence through the measurement uncertainty of the dose response curve. As a result, it was found that the magnitude of the EPR signal increased by about 1.3 times at 64.5 mg, and the sensitivity of the dose response curve increased as the mass increased. The measurement uncertainty was evaluated to be between 5.84 % and 8.93 %. Through this study, it is expected that the EPR/alanine dosimetry system can be applied to the quality assurance and quality control of a LINAC.

APPLICATION OF ALANINE/ESR SPECTRUM SHAPE CHANGE IN GAMMA DOSIMETRY

  • Choi, Hoon;Kim, Jeong-In;Lee, Byung-Ill;Lim, Young-Ki
    • Nuclear Engineering and Technology
    • /
    • v.42 no.3
    • /
    • pp.313-318
    • /
    • 2010
  • Alnine pellets were installed in a nuclear power plant for one or two operation cycles and measured by electron spin resonance (ESR) spectrometers for dosimetry. Dose and "x/y ratio", i.e., satellite peak over main center peak ratio, were measured for the returned alanine dosimeters from the nuclear power plant and compared to the values of reference alanine dosimeters exposed only to gamma rays. The variation of the x/y ratio change depended on the population of radicals from each radiation component with different LET. The gamma dose in a mixed radiation field was estimated by an additive gamma ray irradiation experiment and the measured dose rate at specified locations in the containment building.

The first KREDOS-EPR intercomparison exercise using alanine pellet dosimeter in South Korea

  • Park, Byeong Ryong;Kim, Jae Seok;Yoo, Jaeryong;Ha, Wi-Ho;Jang, Seongjae;Kang, Yeong-Rok;Kim, HyoJin;Jang, Han-Ki;Han, Ki-Tek;Min, Jeho;Choi, Hoon;Kim, Jeongin;Lee, Jungil;Kim, Hyoungtaek;Kim, Jang-Lyul
    • Nuclear Engineering and Technology
    • /
    • v.52 no.10
    • /
    • pp.2379-2386
    • /
    • 2020
  • This paper presents the results of the first intercomparison exercise performed by the Korea retrospective dosimetry (KREDOS) working group using electron paramagnetic resonance (EPR) spectroscopy. The intercomparison employed the alanine dosimeter, which is commonly used as the standard dosimeter in EPR methods. Four laboratories participated in the dose assessment of blind samples, and one laboratory carried out irradiation of blind samples. Two types of alanine dosimeters (Bruker and Magnettech) with different geometries were used. Both dosimeters were blindly irradiated at three dose levels (0.60, 2.70, and 8.00 Gy) and four samples per dose were distributed to the participating laboratories. Assessments of blind doses by the laboratories were performed using their own measurement protocols. One laboratory did not participate in the measurements of Magnettech alanine dosimeter samples. Intercomparison results were analyzed by calculating the relative bias, En value, and z-score. The results reported by participating laboratories were overall satisfactory for doses of 2.70 and 8.00 Gy but were considerably overestimated with a relative bias range of 10-95% for 0.60 Gy, which is lower than the minimum detectable dose (MDD) of the alanine dosimeter. After the first intercomparison, participating laboratories are working to improve their alanine-EPR dosimetry systems through continuous meetings and are preparing a second intercomparison exercise for other materials.