• Title/Summary/Keyword: EPDM(Ethylene Propylene Diene Monomer)

Search Result 72, Processing Time 0.036 seconds

A Study on Recycling of EPDM Reclaimed Rubber (폐 EPDM 고무의 재활용을 위한 기초적 연구)

  • Jang, Doo-Hee;Kim, Ji-Hoon;Kim, Young-Ju
    • Journal of Environmental Science International
    • /
    • v.19 no.3
    • /
    • pp.365-370
    • /
    • 2010
  • In this study, we carried out the evaluation of EPDM(Ethylene Propylene Diene Monomer) reclaimed rubber mixing with natural rubber at various mixing ratio to reuse as rubber filler. The scorch time and moony viscosity was analyzed to evaluate the effect of cure behavior. And also, we analyzed the tensile strength, the elongation at break and cure time to evaluate the variation of cure behavior. As the results, the scorch time and optimal cure time was decreased according to the increasing of EPDM reclaimed rubber. However, the moony viscosity was increased at each mixing ratio. In case of the added EPDM reclaimed rubber was 20 phr(parts by weight per 100 parts by weight of rubber), the hardness and specific gravity was increased a little. The hardness and specific gravity was increased in rapidly under 40 phr of the added EPEM reclaimed rubber. The tensile strength and elongation at break of the compound of natural and EPDM reclaimed rubber was rapidly decreased compared with its natural rubber when the ratio of adding EPDM reclaimed rubber was over 40 phr.

EPDM Compounds for Electric Insulator (전기 절연용 EPDM Compounds)

  • Kim, In-H.;Hwang, S.H.;Kim, Jin-K.
    • Elastomers and Composites
    • /
    • v.34 no.5
    • /
    • pp.407-413
    • /
    • 1999
  • Non-ceramic composite insulator has been interested in the power industry because of its good characteristics in mechanical properties, mass product and design availability. Also it is lighter, and less unexplosive, compared to a ceramic insulator. Especially EPDM rubber composite insulator can be used for long-term in contaminated environments because of its hydrophobicity. This paper showed the rheological properties, the electrical properties, and contact angles to check the hydrophobicity and the recoverability of the EPDM compounds. Also, we investigated surface morphology of the compound by SEM.

  • PDF

A Study on Thermoplastic Elastomer Blend Using Waste Rubber Powder(I): Screw Configurations, Morphologies and Mechanical Properties (폐고무 분말을 이용한 TPE 블렌드에 관한 연구(I) : 스크류 조합, 모폴로지, 기계적 물성)

  • Lee, Sung-Hyo;Hwang, Sung-Hyuk;Kim, Jin-Kuk
    • Elastomers and Composites
    • /
    • v.36 no.2
    • /
    • pp.86-93
    • /
    • 2001
  • For solving the environmental problem of the waste EPDM and for new TPE blend materials, we developed a new kind of TPE material using a co-rotating twin screw extruder. To improve the mechanical properties of TPE material such as tensile strength, elongation at break, and modulus of the blend, PP and waste EPDM powder were blended with different screw configurations. The mechanical properties of the blends and morphology of the TPE were investigated. As the number of kneading disc and left-handed screw element increased, dynamic vulcanization of the material was increased because the shear stress and residence time of blends increased.

  • PDF

Graft Copolymerization of Acrylonitrile and 4-Chlorostyrene onto EPDM Rubber. (EPDM 고무에 Acrylonitrile과 4-Chlorostyrene의 그라프트 공중합)

  • Park, Duck-Jei;Ha, Chang-Sik;Lee, Jin-Kook;Cho, Won-Jei
    • Elastomers and Composites
    • /
    • v.24 no.2
    • /
    • pp.110-121
    • /
    • 1989
  • The radical initiated graft copolymerization of acrylonitrile(AN) and 4-chlorostyrene(4-Clst) onto ethylene-propylene-diene terpolymer(EPDM) rubber was investigated under various conditions. Graft copolymer(AU-EPDM-4-Clst) was isolated b: selective solvent extraction and identified by using IR spectroscopy. The percent grafting is determined as a function of solvent, reaction time, and monomer mole ratio. Percent grafting decreased in the order of tetrahydrofuran(THF)>THF/ethyl acetate(EA)(1 : 1)>cyclohexane/EA(1 : 1)>n-hexane/EA(1 : 1). Grafting increased continuously with increasing the reaction time up to 40 hr, beyond which the grafting levelled off. It was observed that percent grafting increased as increasing [4-Clst]/[AN] mole ratio, but decreased when [4-Clst]/[AN] mole ratio was higher than 1.60. The light resistance of graft copolymer(AN-EPDM-4-Clst) was better than that of ABS.

  • PDF

A Study on the Ultraviolet Aging characteristics of Outdoor Polymeric Insulating Materials (옥외용 고분자 절연재료의 자외선 열화특성 연구)

  • Kim, Y.S.;Lee, S.J.;Park, W.K.;Jeong, S.W.
    • Proceedings of the KIEE Conference
    • /
    • 1998.07d
    • /
    • pp.1404-1406
    • /
    • 1998
  • The outdoor polymeric insulating materials such as silicone rubber, ethylene propylene diene monomer(EPDM), ethylene vinyl acetate(EVA) and epoxy are aged by various natural environment with the long-term performance in outdoor. In this paper, the effects of UV-ray on surface of silicone rubber were investigated by using the weather-Ometer. The accelerated aging stresses were simulated by UV radiation. high temperature and humidity as well as water spray. These the aging characteristics were examined through contact angle measurements, tracking resistance test, FT-IR and SEM/EDS analysis. the experimental results showed that tracking resistance decreases with increase in the UV-ray irradiation period. But the surface of silicone rubber kept hydrophobicity. It is found that the inorganic filler such as $Al(OH)_3$ improves tracking resistance and the $TiO_2$ is very effective in preventing degradation of silicone rubber surface from UV-ray.

  • PDF

Property Enhancement of SiR-EPDM Blend Using Electron Beam Irradiation

  • Deepalaxmi, R.;Rajini, V.
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.3
    • /
    • pp.984-990
    • /
    • 2014
  • Polymers are the most commonly used di-electrics because of their reliability, availability, ease of fabrication and cost. The commercial and industrial demand for advanced polymeric materials which are capable of being used in harsh environment is need of the hour. The study of the effect of electron beam irradiation on polymeric materials is an area of rapidly increasing interest. This paper discusses the resultant beneficial effects of electron beam irradiation on the SiR-EPDM blend having 50:50 composition. The changes in mechanical and electrical properties of SiR-EPDM blend which are exposed to three different doses of electron beam radiation namely 5 Mrad, 15 Mrad and 25 Mrad are presented. The irradiated blends are analyzed for their electro-mechanical and physico chemical properties. The electrical changes induced by irradiation are investigated by arc resistance, surface resistivity and volume resistivity measurements as per ASTM standards. The mechanical changes are observed by the measurement of tensile strength and elongation at break. Physico chemical investigation has been done using the FTIR, in order to investigate the irradiation induced chemical changes.

Gas Impermeability Enhancement of EFDM/Crosslinked IIR Blends (Crosslinked IIR의 블렌드비에 따른 EPDM의 내기체투과특성 향상)

  • Kim, Hyun-Jun;Jung, Il-Hyun;Hong, In-Kwon;Park, Jae-Woo
    • Elastomers and Composites
    • /
    • v.33 no.3
    • /
    • pp.193-200
    • /
    • 1998
  • It is well known that EPDM(ethylene propylene diene monomer) rubber has inherently excellent resistance to the weathering, ozone, heat, cold and moisture, whereas crosslinked IIR (isobutylene isoprene divlnyl benzene terpolymer) shows proper resistance to the water and gas permeation. Various characteristics of EPDM blend with crosslinked IIR such as curing characteristics, mechanical properties, dispersion of minor component and gas impermeability were explored. The optimum curing time $(t_{90})$ examined with peroxide was decreased by adding small amount of crosslinked IIR to the EPDM rubber. Mechanical properties of blends such as tensile strength, hardness and elongation at break were enhanced by increasing EPDM content. These results might be explained with the affinity of carbon black to the EPDM rubber. On the other hand, the physical properties were not changed significantly after aging, and the increase of crosslinked IIR fraction caused the decrease of compression set to small rate. EPDM rubber shows different behavior with crosslinked IIR in oxygen permeability. By adding 30wt.% crosslinked IIR to the EPDM rubber, the resistance to the oxygen permeation was improved up to three times than that of pure EPDM rubber. Conclusively, EPDM blend containing 30wt.% crosslinked IIR might be commercially applied to the o-ring and electric parts because of its proper resistance to the weathering, ozone and oxygen permeability.

  • PDF

Effects of Fillers on Fatigue Crack Growth Rate of Ethylene Propylene Diene Monomer (충전제가 EPDM의 피로균열 성장속도에 미치는 영향)

  • Hong, Chang-Kook;Jung, Jae-Yeon;Cho, Dong-Lyun;Kaang, Shin-Young
    • Polymer(Korea)
    • /
    • v.32 no.3
    • /
    • pp.270-275
    • /
    • 2008
  • Crack growth characteristics of elastomeric materials are an important factor determining the strength and durability. In this study, the fatigue crack growth characteristic of filled EPDM compounds with different reinforcing fillers, such as silica and carbon black, was investigated using a newly designed tester. Frequency and test temperature had significant effects on the fatigue crack growth. The crack growth rate decreased with increasing frequency and the rate increased with increasing temperature. A power law relationship between the tearing energy and crack growth was observed for filled EPDM compounds. The crack growth rate reduced with increasing filler contents. Silica filled EPDM showed a better fatigue resistance than carbon black filled EPDM. The crack growth rate of silica filled EPDM decreased up to 30 phr and increased again at 50 phr. The formation of microductile type pits was observed on the fatigue-failure surface of unfilled EPDM, and relatively coarse surface with randomly distributed tear lines was observed on the failure surface of silica filled EPDM.

Insulation Characteristics of Contaminated Polymeric Insulators in the Field Condition (옥외용 폴리머 절연물의 표면 오손에 따른 절연특성 연구)

  • Lee, Byung-Sung;Park, Chul-Bae;Park, Yung-Woo;Chun, Sung-Nam
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.2019-2020
    • /
    • 2008
  • 옥외에서 폴리머 애자의 사용량이 급격하게 증가하는 이유는 자기제 애자에 비해 경량이면서 오손특성이 우수하다는 장점 때문이다. 약 10년 전 국내 배전선로에 설치된 EPDM(Ethylene propylene diene monomer) 재질의 폴리머 현수애자의 섬락고장이 있었다. 폴리머 애자는 재질 특성상 사용시간에 따라 표면 열화가 진행되고, 표면의 절연저항이 감소하여 누설전류가 증가하게 된다. 표면 섬락고장을 유발하는 누설전류는 절연물 표면 상태에 많은 영향을 받는다. 본 연구에서는 폴리머애자 표면에 부착된 오손물이 전기적 특성에 미치는 영향을 분석하였다. 표면에 부착된 미세한 오손물은 발수성을 급격히 저하시켰으며, 장시간 수분에 노출될 경우 상용전압에서 표면 방전의 원인이 되었다. 결과적으로 부착된 오손물은 누설전류와 절연내력에 영향을 주어 절연 특성을 저하시키게 된다.

  • PDF

ATH를 첨가한 실리콘 고무의 염무/열 반복열화 특성변화(I)

  • Oh, Tae-Seung;Lee, Chung;Kim, Ki-Yup;Park, Soo-Gil;Ryu, Boo-Hyung
    • Proceedings of the Korean Institute of Industrial Safety Conference
    • /
    • 2001.11a
    • /
    • pp.141-146
    • /
    • 2001
  • 송전전압의 대용량화에 따라 옥외용 절연재료 특히, 애자는 porcelain에서 소형화가 가능한 고분자 소재로 전환되고 있다. 이러한 고분자 소재는 소형화, 경량화뿐만 아니라 저가, 가공의 용이성, 우수한 절연성능을 가지지만, 옥외용 절연재료인 애자로서 갖춰야 할 내후성, 내산화성 등은 porcelain insulator에 비해 낙후된 상태이다. 하지만 애자 중 실리콘 고무는 비교적 내광성, 내열성, 산화안정성, 내후성 등이 우수한 특성을 나타내나 EPDM(ethylene propylene diene monomer)에 비해 가격이 비싸며 낮은 인열강도를 나타내는 등의 단점을 가지고 있다. 그리고 애자는 염분이나 열 등에 의해서 표면방전과 섬락을 일으켜 절연파괴를 일으키지만, 그것이 계속 반복열화함에 따라서는 기계적 강도가 급격히 저하함으로 적절한 평가가 요구된다.(중략)

  • PDF