• Title/Summary/Keyword: ENVIRONMENTAL POLLUTANT

Search Result 1,541, Processing Time 0.023 seconds

Development of Pollutant Removal Model in the Artificial Wetland (인공습지의 수질개선 효과 분석모델 개발)

  • Choi, Ji-Yong
    • Journal of Wetlands Research
    • /
    • v.4 no.1
    • /
    • pp.51-61
    • /
    • 2002
  • The wetland is a biologically integrated system consisting of water, soil, bacteria, plants, and animals. The wetland helps sustain the ecosystem, control the micro-climate and flood, maintain the ground water level, and provide fishing grounds. From the environmental standpoint, the wetland plays a vital role in reducing water pollution by filtering out sand and other polluted matters, producing oxygen, absorbing chemicals and nutrients. For these reasons, interest in restoring the wetlands has been steadily increasing. Artificial wetland, which is also referred to as created wetland or constructed wetland, is an alternative to natural wetland. Like natural wetland, artificial wetland is environmentally friendly and can effectively lower pollutant levels. The Korea government is actively reviewing the construction of artificial wetlands in mining and water supply areas to decrease nonpoint pollutant sources. This paper attempts to develop a pollutant removal model for the water quality improvement function of artificial wetlands. Artificial wetland can improve the quality of the water; however, depending on the type of water inflow, vegetation and hydrology, its effect can be different.

  • PDF

Evaluation of the Representativeness of Air Quality Monitoring Network in Seoul through Actual Measurement (대기오염도 실측에 의한 대기오염 자동측정망의 대표성 평가)

  • Jeon, Eui-Chan
    • Journal of Environmental Impact Assessment
    • /
    • v.5 no.1
    • /
    • pp.79-85
    • /
    • 1996
  • Simultaneous monitoring in many locations is necessary to evaluate the air quality and analyze future trend of a city, For this purpose, it is essential to install air pollution monitoring network. The first automatic air pollution monitoring network was introduced Seoul in 1973. As of 1995, 20 monitoring stations are now in operation. Concerning the management of the air pollution monitoring network, there was some argument among the relavant scholars, non-governmental organization(NGO) and the government organization. So far, there was no extensive evaluation and analysis about the network. The purpose of this study was to evaluate the representativeness of air quality monitoring network through actual measurement of the concentration of the air pollutant. The concentration of NOx was extensively measured widely in Seoul area three times using the TEA simple measuring technique. Even the judgement level for the area representativeness was lowered to 80%, Ssangmun-dong monitoring station tend to overestimate the pollutant concentration of the covered area. While, Sinlimdong monitoring station tend to underestimate the pollutant concentration of the covered area.

  • PDF

Estimation of Pollutant Delivery Load in Hydraulic and Hydrologic Aspects for Water Quality Modeling (수질모델링을 위한 유달부하량의 수리·수문학적 산정)

  • Kim, Sang dan;Song, Mee Young;Kim, Hung Soo
    • Journal of Wetlands Research
    • /
    • v.6 no.3
    • /
    • pp.47-54
    • /
    • 2004
  • A hydraulically and hydrologically based estimation method of pollutant delivery load for water quality modeling is proposed. The proposed method works on grid basis and routes overland flows from one cell to the next following the maximum downslope directions. The method is able to consider spatially-varied data of source pollutant, topography, land slopes, soil characteristics, land use and aspects, which can be extracted from geographic information systems (GIS) and from digital elevation models (DEMs). Because of this feature, the proposed method can be expected to be used for evaluating the impacts of various practices on watershed management for water quality.

  • PDF

Metal Effects of Urban Air Particulates on Cytokine Production and DNA Damage

  • Lee, Kwan-Hee;Hong, Yun-Chul
    • Toxicological Research
    • /
    • v.17 no.4
    • /
    • pp.255-265
    • /
    • 2001
  • Epidemiologic studies have demonstrated an association between short-term exposure to particulate air pollutants and increased mortality. However the biological mechanism underlying these associations have not been fully established and also the chemical and physical characteristics of the pollutant particles are not well understood. The metal constituents of air pollutant particles and their bioavailability are considered to Play an important role as possible mediators of Particle-induced airway injury and inflammation. Sprague-Dawley rat alveolar macrophage cells (NR8383) were exposed to airborne and acid-leached particulate matter (PM). Titanium oxide and nickel subsulfide were used as negative and positive controls. Particle-induced reactive oxygen species formation in cells was detected using the fluorescent probe 2',7'-dichlorofluorescin diacetate. Expression of TNF-$\alpha$ and IL-6 were measured by enzyme-linked immunosorbent assay, and PM-induced DNA double-strand breaks were determined with $\lambda$DNA/Hind III marker. Metals associated with air pollutant particles mediated intracellular oxidant production in alveolar macrophages, and the cytotoxicity and proinflammatory cytokine production induced by PM were associated with oxidative stress. The oxidants produced by air pollutant particles also are likely to induce DNA double-strand breaks. Our findings in alveolar macrophage cells exposed to PM and acid-leached PM support the hypothesis that metal components in urban air pollutants and their bioavailabilities might play an Important role in the induction of the adverse health effects.

  • PDF

Study on Dispersion Characteristics for Fire Scenarios in an Urban Area Using a CFD-WRF Coupled Model (CFD-WRF 접합 모델을 이용한 도시 지역 화재 시나리오별 확산 특성 연구)

  • Choi, Hee-Wook;Kim, Do-Yong;Kim, Jae-Jin;Kim, Ki-Young;Woo, Jung-Hun
    • Atmosphere
    • /
    • v.22 no.1
    • /
    • pp.47-55
    • /
    • 2012
  • The characteristics of flow and pollutant dispersion for fire scenarios in an urban area are numerically investigated. A computational fluid dynamics (CFD) model coupled to a mesoscale weather research and forecasting (WRF) model is used in this study. In order to more accurately represent the effect of topography and buildings, the geographic information system (GIS) data is used as an input data of the CFD model. Considering prevailing wind, firing time, and firing points, four fire scenarios are setup in April 2008 when fire events occurred most frequently in recent five years. It is shown that the building configuration mainly determines wind speed and direction in the urban area. The pollutant dispersion patterns are different for each fire scenario, because of the influence of the detailed flow. The pollutant concentration is high in the horse-shoe vortex and recirculation zones (caused by buildings) close to the fire point. It thus means that the potential damage areas are different for each fire scenario due to the different flow and dispersion patterns. These results suggest that the accurate understanding of the urban flow is important to assess the effect of the pollutant dispersion caused by fire in an urban area. The present study also demonstrates that CFD model can be useful for the assessment of urban environment.

Enhancement of Land Load Estimation Method in TMDLs for Considering of Climate Change Scenarios (기후변화를 고려하기 위한 오염총량관리제 토지계 오염부하량 산정 방식 개선)

  • Ryu, Jichul;Park, Yoon Sik;Han, Mideok;Ahn, Ki Hong;Kum, Donghyuk;Lim, Kyoung Jae;Park, Bae Kyung
    • Journal of Korean Society on Water Environment
    • /
    • v.30 no.2
    • /
    • pp.212-219
    • /
    • 2014
  • In this study, a land pollutant load calculation method in TMDLs was improved to consider climate change scenarios. In order to evaluate the new method, future change in rainfall patterns was predicted by using SRES A1B climate change scenarios and then post-processing methods such as change factor (CF) and quantile mapping (QM) were applied to correct the bias between the predicted and the observed rainfall patterns. Also, future land pollutant loads were estimated by using both the bias corrected rainfall patterns and the enhanced method. For the results of bias correction, both methods (CF and QM) predicted the temporal trend of the past rainfall patterns and QM method showed future daily average precipitation in the range of 1.1~7.5 mm and CF showed it in the range of 1.3~6.8 mm from 2014 to 2100. Also, in the result of the estimation of future land pollutant loads using the enhanced method (2020, 2040, 2100), TN loads were in the range of 4316.6~6138.6 kg/day and TP loads were in the range of 457.0~716.5 kg/day. However, each result of TN and TP loads in 2020, 2040, 2100 was the same with the original method. The enhanced method in this study will be useful to predict land pollutant loads under the influence of climate change because it can reflect future change in rainfall patterns. Also, it is expected that the results of this study are used as a base data of TMDLs in case of applying for climate change scenarios.

Installation and operation of automatic nonpoint pollutant source measurement system for cost-effective monitoring

  • Jeon, Jechan;Choi, Hyeseon;Shin, Dongseok;Kim, Lee-hyung
    • Membrane and Water Treatment
    • /
    • v.10 no.1
    • /
    • pp.99-104
    • /
    • 2019
  • In Korea, nonpoint pollutants have a significant effect on rivers' water quality, and they are discharged in very different ways depending on rainfall events. Therefore, preparing an optimal countermeasure against nonpoint pollutants requires much monitoring. The present study was conducted to help prepare a method for installing an automatic nonpoint pollutant measurement system for the cost-effective monitoring of the effect of nonpoint pollutants on rivers. In the present study, monitoring was performed at six sites of a river passing through an urban area with a basin area of $454.3km^2$. The results showed that monitoring could be performed for a relatively long time interval in the upstream and downstream regions, which are mainly comprised of forests, regardless of the rainfall amount. On the contrary, in the urban region, the monitoring had to be performed at a relatively short time interval each time when the rainfall intensity changed. This was because the flow rate was significantly dependent on the rainfall's intensity. The appropriate sites for installing an automatic measurement system were found to be a site before entering the urban region, a site after passing through the urban region, and the end of a river where the effects of nonpoint pollutant sources can be well-decided. The analysis also showed that the monitoring time should be longer for the rainfall events of a higher rainfall class and for the sites closer to the river end. This is because the rainfall runoff has a longer effect on the river. However, the effect of nonpoint pollutant sources was not significantly different between the upstream and the downstream in the cases of rainfall events over 100 mm.

Pollutant Loading Estimates from Watershed by Rating Curve Method and SWMM

  • Jeon, Ji-Hong;Yoon, Chun-Gyeong
    • Korean Journal of Environmental Agriculture
    • /
    • v.19 no.5
    • /
    • pp.419-425
    • /
    • 2000
  • Rating curve method and SWMM (Storm Water Management Model) were applied to estimate pollutant loading from Hwa-Ong watershed in Kyunggi-Do. Rating curves were derived from sampling sites and applied to the whole watershed. SWMM version 4.4 was calibrated by field data of sampling sites and applied to the whole watershed. The pollutant loading estimated by rating curve was slightly higher than the one by SWMM, but the difference was not significant considering diffuse pollution characteristics of wide variation. Land use effect of the subcatchments could not be incorporated logically in rating curve method and difficulty in extrapolation was experienced, therefore, the estimate by rating curve method was thought to be less confident. SWMM was satisfactory in estimation of pollution loading, and its great flexibility worked well to describe complex nonurban land uses. Neither of them could exactly describe complex natural phenomena, but SWMM was preferred in this study due to its flexibility and logical hydrologic processes including land use effects. Use of reasonable watershed model rather than rating curve method for watershed pollutant loading estimate can be more practical and is recommended.

  • PDF

Water quality management of Jeiu Harbor using material cycle model(II) - Characteristics of water quality in Jeiu harbor and the estimation of pollutant loadings - (물질순환모델을 이용한 제주항의 수질관리(II) - 제주항의 수질 특성과 오염부하량 산정 -)

  • 조은일;강기봉
    • Journal of Environmental Science International
    • /
    • v.12 no.3
    • /
    • pp.299-306
    • /
    • 2003
  • The purpose of this study is to investigate the characteristics of water quality in Jeju harbor and to estimate pollutant loadings discharged into Jeju Harbor. To know characteristics of water quality in Jeju harbor, and pollutant loadings of Sanzi river, we have investigated from August, 2000 to May, 2001. The results showed that the concentrations of COD, DIN and DIP were in the range of 1.00∼4.85 mg/L (mean 2.15 mg/L), 2.14∼74.0 $\mu\textrm{g}$-at/L(mean 12.20 $\mu\textrm{g}$-at/L) and 0.52∼4.00 $\mu\textrm{g}$-at/L(mean 1.18 $\mu\textrm{g}$-at/L), respectively. These values were under III class of seawater quality criteria. The ratio of nitrogen to phosphorus was lower than 16 except for Station 1 in Jeju harbor. Therefore, nitrogen was playing an important role in phytoplankton growth as limiting factor in Jeju harbor. The mean values of eutrophication index were exceeding 1, which was the eutrophication criteria. The results of estimating pollutant loadings at Sanzi river are 0.30 ton/day for COD, 300 kg/day for DIN and 18.0 kg/day for DIP, respectively.

Characteristics of Pollutant Loads and Water Quality in Kwangyang Bay, Korea

  • Lee Dae-In;Park Chung-Kil;Cho Hyeon-Seo
    • Fisheries and Aquatic Sciences
    • /
    • v.6 no.3
    • /
    • pp.149-154
    • /
    • 2003
  • The characteristics of pollutant loads from the various sources and seawater quality in Kwangyang Bay were evaluated. Total flow rate was estimated to be $10,868,066.8 m^3/day$ with a flow rate of R2l (the Seomjin River) as the highest one. Total COD, TN and TP loads of the input rivers and the ditches were about 27,591.8, 25,029.6 and 586.4 kg/day, respectively. Wastewater discharging loads was the greatest contributors to pollutant loads in the inner part of Kwangyang Bay. COD values in the inner part of the bay was over 3.0 mg/L, which exceeded the seawater quality criteria III of Korea. The average values of DIN and DIP were 8.62 ${\mu}gN/L\;and\;1.26\;{\mu}gP/L$, respectively. The limiting factor for algal growth was DIN. In he total discharging loads of the watershed from unit loading estimations, BOD, TN and TP were 9,132.3, 2,727.2 and 304.2 kg/day, respectively. In addition, municipal sewage by the population as pollution sources and the city of Kwangyang as administrative district had the highest loads. For a appropriate water quality recovery of Kwangyang Bay, it is suggested that it is essential to estimate reduction rate of total pollutant loads by water quality modeling.