• Title/Summary/Keyword: EMULSION

Search Result 1,994, Processing Time 0.029 seconds

Effects of BCG on the DNA Synthesis and Ultrastructure of Mouse Gastric Mucosal Epithelial Cells Inoculated with Ehrlich Carcinoma Cells (BCG가 Ehrlich 암세포를 이식한 생쥐의 위점막 상피세포의 DNA합성 및 미세구조에 미치는 영향)

  • Ko, Jeong-Sik;Ryoo, In-Sang;Park, Kyung-Ho;Park, Dae-Kyoon
    • Applied Microscopy
    • /
    • v.39 no.3
    • /
    • pp.205-218
    • /
    • 2009
  • This experiment was performed to evaluate the morphological responses of the gastric epithelial cells of the mouse, inoculated with Ehrlich carcinoma cells in the inguinal area, following administration of BCG. Healthy adult ICR mice weighing 25 gm each were divided into normal and experimental groups (tumor control group and BCG-treated group). In the experimental groups, each mouse was inoculated with $1{\times}10^7$ Ehrlich carcinoma cells subcutaneously in the inguinal area. From next day after inoculations, 0.2 mL of saline or BCG (0.5 mL/25 g B.W.: $0.03{\times}10^8{\sim}0.32{\times}10^8$ CFU) were injected subcutaneously to the animals every other day, respectively. The day following the 7th injection of saline or BCG, each mouse was injected with a single dose of 0.7 ${\mu}Ci/g$ of methyl-$^3H$-thymidine (25 Ci/mmol, Amersham Lab., England) through tail vein. Seventy minutes after the thymidine injection, animals were sacrificed, and gastric tissues were taken and fixed in 10% neutral formalin. Deparaffinized sections were coated with autoradiographic emulsion EM-1 (Amersham Lab., England) in a dark room. The number of labeled epithelial cells in the gastric mucosae (mean number of labeled epithelial cells per 3.5 mm length of mucosa) were observed and calculated. And for electron microscopic observation, gastric tissues were prefixed with 2.5% glutaraldehyde-1.5% paraformaldehyde solution, followed by post-fixation with 1% osmium tetroxide solution. On the light microscopic study, gastric mucosae had no morphological changes following the injection of BCG. On the electron microscopic study, in the BCG-treated mice, myelin figures and multivesicular bodies within the gastric epithelial cells were observed more frequently than in those of the normal control ones. On the autoradiographic study, number of the labeled cells of normal control, tumor control and BCG-treated mice were 380.2 (${\pm}31.35$), 426.1 (${\pm}28.43$) and 301.8 (${\pm}34.63$), respectively. In the BCG-treated mice, poorly-labeled cells containing only a few silver grains of 3H-thymidine were observed more frequently as compared in those of the normal control and tumor control ones. From the above results, BCG may suppress the DNA synthesis of the gastric epithelial cells, but does not results severe fine structural defect on the gastric epithelial cells. These results suggest that BCG is expected as one of the effective supplemental anticancer drugs.

Antibacterial Activity of Hippophae rhamnoides Leaf Extract and the Stability of a Cream with the Extract (비타민나무 잎 추출물의 항균 활성 및 크림의 안정성)

  • Chae, Kyo-Young;Kim, Jung-Eun;Park, Soo-Nam
    • Microbiology and Biotechnology Letters
    • /
    • v.40 no.1
    • /
    • pp.43-49
    • /
    • 2012
  • In this study, we investigated the antibacterial activity and stability of a cream containing Hippophae rhamnoides leaf extract. The MIC values of ethyl acetate fraction from an H. rhamnoides leaf on Escherichia coli, Pityrosporum ovale, Propionibacterium acnes and Staphylococcus aureus were 0.5%, 0.25%, 0.25% and 0.06%, respectively. Stability evaluations, pH, viscosity and absorbance of the cream containing 0.25% ethyl acetate fraction of H. rhamnoides, were performed. The cream was measured under 4 different temperature conditions under sunlight at 2-week intervals for 12 weeks. The viscosity and pH were measured by a comparison of the experimental cream with a similar control cream. The H. rhamnoides extract was found to have contributed to the stability of the emulsion product via a protective effect in maintaining the viscosity of the cream against sunlight. The absorbance variations of the experimental cream at 270 nm were, under sunlight; $45^{\circ}C$, $37^{\circ}C$, $25^{\circ}C$, and $4^{\circ}C$. In addition, any change in color or smell was not observed through the 12 weeks of the experimental period. These results indicated that the cream containing 0.25% ethyl acetate fraction of H. rhamnoides leaf extract was stable. Accordingly, this suggests that further study is needed to provide additional information for manufacturers, who are seeking the application of the extract to improve anti-oxidant and antibacterial activities and the stability of cosmetic products.

Effect of Containers on the stability of Malathion emulsion concentrates (E.C.) (Malathion 유제(乳劑)의 포장용기(包裝容器)에 따른 경시변화(經時變化))

  • Lee, D.S.;Lee, J.Y.;Lee, S.H.
    • Applied Biological Chemistry
    • /
    • v.7
    • /
    • pp.15-19
    • /
    • 1966
  • In order to investigate the stability of the major component of malathion E.C. product, dimethyl S-(1, 2-dicarboxyethoxyethyl) dithiophosphate, toward the quality of glasswares as container, the amount of extractable inorganic components, change of pH and decomposition of the major component of the product were examined during the storage in brown-colored bottles of 100 ml. volume from 3 different companies in comparison with that in a Pyrex flask. 1. Malathion E.C. product was put in three containers A,B and C, and any changes occurring in storage were analyzed at three intervals of 60, 120 and 240 days. 2. It was shown that the amounts of Si, Mg, K, Ca, and Na extracted during these periods of storage differed markedly depending on the qualify of container. Container A revealed ten times higher extraction of Na and Ca than container B and C in a 8-month period. 3. Three commercial containers revealed the shift of pH from 6.5 to alkaline reaction in the storage whereas the Pyrex flask did not show any detectable change. In particular, the pH in container A changed to 9.2 in 60 days and 9.9 in 240 days. 4. The decomposition of malathion was the greatest in container A which showed the decomposition of 7.37% in 240 days. On the other hand, 0.5% was decomposed in the Pyrex flask. 5. The decemposition of malathion had a high correlation with the change of pH of water· in the same container, $r^2$ being 0.899. From the above results, it is concluded that about 10% of malathion E.C. product is decomposed in a year due to the alkaline metallic salts extracted from the container when it is stored in glassware bottles of lower quality.

  • PDF

Electrochemical Performance as the Positive Electrode of Polyaniline and Polypyrrole Hollow Sphere with Different Shell Thickness (껍질 두께가 다른 폴리아닐린과 폴리피롤 속 빈 구형체 양전극의 전기화학적 성능)

  • Yun, Su-Ryeon;Hwang, Seung-Gi;Cho, Sung-Woo;Kang, Yongku;Ryu, Kawng-Sun
    • Applied Chemistry for Engineering
    • /
    • v.23 no.2
    • /
    • pp.131-137
    • /
    • 2012
  • Polyaniline (PANI) and polypyrrole (Ppy) hollow sphere structures with controlled shell thicknesses can be easily synthesized than those of using a layer-by-layer method for cathode active material of lithium-ion batteries. Polystyrene (PS) core was synthesized by emulsion polymerization using an anion surfactant. The shell thicknesses of PANI and Ppy were controlled by amounts of aniline and pyrrole monomers. PS was removed by an organic solution. This structure increased in contact with an electrolyte and a specific capacity in lithium-ion batteries. But polymers have disadvantages such as the difficult control of molecular weights and low densities. These disadvantages were completed by controlled shell thicknesses. The amount of aniline monomer increased from 1.2, 2.4, 3.6, 4.8 to 6.0 mL, and the shell thicknesses were 30.2, 38.0, 42.2, 48.2, and 52.4 nm, respectively. And the amount of pyrrole monomer was 0.6, 1.2, 2.4 and 3.6 mL, the shell thicknesses were 16.0, 22.0, 27.0 and 34.0 nm, respectively. In the cathode materials with controlled shell thicknesses, shell thicknesses of the PANI hollow spheres were 30.2, 42.2, and 52.4 nm, and discharge specific capacities of after 10 cycle were ~18, ~29, and ~62 mAh/g, respectively. The shell thicknesses of the Ppy hollow spheres were 16.0, 22.0, 27.0 and 34.0 nm, and discharge specific capacities of after 15 cycle were ~15, ~36, ~56, and ~77 mAh/g, respectively. Thus, shell thicknesses of PANI and Ppy increased, the specific capacities increased.

Evaluation of Antioxidant Activities of Red Beet Extracts, and Physicochemical and Microbial Changes of Ground Pork Patties Containing Red Beet Extracts during Refrigerated Storage (레드비트 추출물의 항산화 활성 및 레드비트를 첨가한 돈육패티의 냉장저장 중 이화학적 성상 및 미생물의 변화)

  • Lee, Jun-Ho;Chin, Koo-Bok
    • Food Science of Animal Resources
    • /
    • v.32 no.4
    • /
    • pp.497-503
    • /
    • 2012
  • This study was performed in order to evaluate the antioxidant activities of red beet extracts as well as the physicochemical properties and microbial changes of pork patties containing red beet during refrigerated storage. Red beet was extracted with water and ethanol. Red beet water extracts (RBW) and red beet ethanol extracts (RBE) were diluted with various concentrations (0.05~1.0%). DPPH radical scavenging activity and iron chelation activity of RBW showed a higher level than those of RBE (p<0.05). In particular, the iron chelation activity of RBW was over 53.4% at all levels. In addition, RBW at 1% had nearly 100% activity. On the other hand, the reducing powers of RBE were higher than those of RBW (p<0.05), and the antioxidant activity on linoleic acid emulsion of RBW was over 83% at all levels. Based on these model studies, 0.5% levels of RBW and RBE were added to ground pork patties (GPP), and the physicochemical properties and microbial changes of red beet GPP were evaluated during storage (0~14 d) at $4^{\circ}C$. The pH and microbial counts increased with increased storage time (p<0.05). Pork patties with BHT showed the lowest thiobarbituric acid reactive substances (TBARS) and microbial counts, and those with red beet had lower TBARS than the control (p<0.05). These results indicated that both red beet water and ethanol extracts could be used as natural antioxidants of pork patties during storage.

Quality Characteristics of Low Fat Salad Dressing with Spirulina during Storage (스피루리나 첨가 저지방 샐러드 드레싱 저장 중 품질 특성)

  • Cho Han;Yang Yun-Hyoung;Lee Kun-Jong;Cho Yong-Sik;Chun Hye-Kyung;Song Kyung-Bin;Kim Mee-Ree
    • Food Science and Preservation
    • /
    • v.12 no.4
    • /
    • pp.329-335
    • /
    • 2005
  • Storage quality characteristics of low fat salad dressing with spirulina($0.28\%$) was evaluated. After 2 wks of storage, viscosity decreased according to the prolonged storage time. After 8 wks storage, emulsion stability decreased to $30\%$, which was $25\%$ of freshly made dressing. The fat globule size distribution was not different from that of control until one month of storage, but after 75 days of storage, the fat globule size distribution pattern changed into the increase of larger size($15{\sim}2.0\;{\mu}m$: $11.4\%$ for control, $30.1-32.3\%$ for 75 days of storage). Hunter color of L value decreased, whereas a and b value increased according to the prolonged storage time. TBARS value at 8 wks of storage was increased upto $10\%$ for storage at $5^{\circ}C$ and $15\%$ for storage at $10^{\circ}C$. Antioxidant activity of salad dressing decreased according to the storage temperature and time: $IC_{50}$ values of DPPH radical scavenging activity of 8 wk storage was 157.4 mg/mL at $5^{\circ}C$ and 194.6 mg/mL at $10^{\circ}C$. Total microbial number of salad dressing was increase to 7.9 log(CFU/mL), but E. coli was not detected Based on present condition, low temperature storage was favorable for better quality of spirulina salad dressing.

Phase Behavior Study of Fatty Acid Potassium Cream Soaps (지방산 칼륨 Cream Soaps 의 상거동 연구)

  • Noh, Min Joo;Yeo, Hye Lim;Lee, Ji Hyun;Park, Myeong Sam;Lee, Jun Bae;Yoon, Moung Seok
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.48 no.1
    • /
    • pp.55-64
    • /
    • 2022
  • The potassium cream soap with fatty acid called cleaning foam has a crystal gel structure, and unlike an emulsion system, it is weak to shear stress and shows characteristics that are easily separated under high temperature storage conditions. The crystal gel structure of cleansing foams is significantly influenced by the nature and proportion of fatty acids, degree of neutralization, and the nature and proportion of polyols. In order to investigate the effect of these parameters on the crystal gel structure, a ternary system consisting of water/KOH/fatty acid was investigated in this study. The investigation of differential scanning calorimeter (DSC) revealed that the eutectic point was found at the ratio of myristic acid (MA) : stearic acid (SA) = 3 : 1 and ternary systems were the most stable at the eutectic point. However, the increase in fatty acid content had little effect on stability. On the basis of viscosity and polarized optical microscopy (POM) measurements, the optimum degree of neutralization was found to be about 75%. The system was stable when the melting point (Tm) of the ternary system was higher than the storage temperature and the crystal phase was transferred to lamellar gel phase, but the increase in fatty acid content had little effect on stability. The addition of polyols to the ternary system played an important role in changing the Tm and causing phase transition. The structure of the cleansing foams were confirmed through cryogenic scanning electron microscope (Cryo-SEM), small and wide angle X-ray scattering (SAXS and WAXS) analysis. Since butylene glycol (BG), propylene glycol (PG), and dipropylene glycol (DPG) lowered the Tm and hindered the lamellar gel formation, they were unsuitable for the formation of stable cleansing foam. In contrast, glycerin, PEG-400, and sorbitol increased the Tm, and facilitated the formation of lamellar gel phase, which led to a stable ternary system. Glycerin was found to be the most optimal agent to prepare a cleansing foam with enhanced stability.

Effect of Adding Milk on Compatibility with 3D Printing in the Preparation of a Surimi Mixture (수리미 혼합물 제조 시 우유 첨가에 따른 3D 프린팅 적합성에 미치는 영향)

  • Yoo-Seok Kang;Hye-ji Hwang;Ye-Lin Park;Hyeon-Su Han;Jeong-Cheol Park;Hun-Seo Seo;Ye-Hui Choi;Su-Hyeong Kim;Ka-Eun Woo;So-Mi Jeong;Ga-Hye lee;Dong-Hyun Ahn
    • Journal of Life Science
    • /
    • v.33 no.5
    • /
    • pp.391-396
    • /
    • 2023
  • Milk is an emulsion, improving texture of surimi mixture and able to suppress off flavors and abnormal tastes. Therefore, this study aimed to identify the effective properties of milk in the preparation of a surimi mixture for 3D printing. The sensory and physical properties of surimi mixtures containing 0%, 20 wt%, and 40 wt% milk were evaluated, where the unheated surimi mixture with added milk demonstrated increased firmness and adhesiveness compared to the negative control group. In addition, the hardness, adhesiveness, gumminess, and chewiness of the mixture containing 40% milk were highest, but springiness, cohesiveness, and resilience were lowest. In the sensory evaluation, as the amount of milk increased, a fishy smell, abnormal taste and texture improved, hardness and preference increased as well. From these results, it was confirmed that a surimi mixture can be prepared with milk to improve its physical and sensory properties for 3D printing when compared to the negative control mixture. In particular, it was revealed that the physical properties and preference of the surimi mixture are best when prepared with 40% milk.

Increased Water Resistance and Adhesion Force to Skin through the Hybrid of Fatty Acid Ester and Titanium Dioxide (지방산 에스테르와 티타늄다이옥사이드의 복합화를 통한 내수성과 피부 밀착력 개선)

  • Ji Yeon Hong;Chi Je Park;Yong Woo Kim;Sang Keun Han;Sung Bong Kye;Ho Sik Roh;Soo Nam Park
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.49 no.3
    • /
    • pp.247-258
    • /
    • 2023
  • This study aims to investigate the enhancement of water resistance and improvement in adhesion to the skin by combining dextrin palmitate and isopropyl titanium triisostearate coating materials with titanium dioxide. Due to the recent increase in consumers who enjoy outdoor activities, the demand for sunscreen with excellent water resistance is increasing. Prior research was conducted with O/W, Pickering, and W/O/W multiple formulations, but there was a limit to water resistance. The purpose of this study is to develop a complex inorganic powder that can improve water resistance and increase adhesion to the skin to solve this problem. First, we combined dextrin palmitate and isopropyl titanium triisostearate coating materials to form a composite with titanium dioxide. The coating of the inorganic powder was confirmed using FE-SEM and FT-IR analysis. The composite exhibited significantly higher in vitro water resistance compared to other formulations. The hydrophobicity of the coated inorganic powder was compared by measuring the contact angles. When the coated inorganic powder was applied to the W/O sunscreen formulation and the non-coated inorganic powder was applied to the W/O sunscreen formulation as a control, the SPF of the sunscreen containing the coated inorganic powder was higher. These results were the same when observed with a UV camera. Finally the adhesion of the coated inorganic powder to the skin was assessed by applying it to a foundation product. In vivo study, it was observed that the product formulated with the coated powder exhibited less smudging compared to the foundation product formulated with the non-coated powder. The developed inorganic powder in this study demonstrated excellent adhesion to the skin, providing a superior sensory experience, as well as enhanced hydrophobicity and remarkable water resistance effects. In the future, the result of this study is expected to help develop various sunscreen products to improve water resistance.

Effect of Oil in Water Nanoemulsion Containing a Mixture of Lactic Acid and Gluconolactone for Skin Barrier Improvement (유산 및 글루코노락톤 혼합물을 함유하는 수중유형 나노에멀젼의 피부장벽개선 효과)

  • Ji-Hye Hong;Young Duck Choi;Gye Won Lee;Young Ho Cho
    • Journal of Life Science
    • /
    • v.33 no.11
    • /
    • pp.905-914
    • /
    • 2023
  • To evaluate the effectiveness of the skin barrier improvement of lactic acid (LA) and gluconolactone (GL), the expression of filaggrin, loricrin, hyaluronic acid (HA), hyaluronan syhthase-2 (HAS2), and aquaporine-3 (AQP3) in keratinocytes, and the moisture content and transepidermal water loss (TEWL) by clinical trials were evaluated. The expression levels of filaggrin and locricrin, which are the main factors affecting the proper functioning of skin barrier function, and HA, HAS2, and AQP3, which are skin moisturizing-related proteins measured by quantitative real-time polymerase chain reaction (qRT-PCR) and western blotting. The results showed that the expression levels of the factors that decreased by H2O2 treatment were significantly increased by LA, GL, and a mixture of LA and GL at the mRNA and protein levels (p<0.05). The nanoemulsion containing a mixture of LA and GL was prepared using the emulsion inversion method, and the average particle size was 299.9 ± 0.287 nm. After measuring the TEWL of nanoemulsion using Vapometer, it was found that TEWL significantly decreased by 15.53% and 26.73% after two weeks and four weeks of product use, respectively, compared to TEWL before product use (p<0.001). Similarly, the skin moisture content of the nanoemulsion significantly increased by 15.40% and 26.59% after two weeks and four weeks of product use, respectively, compared to skin moisture content before product use (p<0.001). Therefore, the skin barrier function and moisturizing effect of a mixture of LA and GL are shown by increasing the moisture content and decreasing the TEWL by increasing the expression of filaggrin, loricrin, HA, HAS2, and AQP3. This suggests the possibility for the development of functional cosmetic ingredients in the future.