• Title/Summary/Keyword: EMU train

Search Result 154, Processing Time 0.027 seconds

Test operation and development of Automatic/Driverless operation system for the standardized type EMU (표준전동차 자동/무인운전기술 개발 및 시운전에 관한 연구)

  • 한성호;안태기;이수길;이관섭;김원경;최규형
    • Proceedings of the KSR Conference
    • /
    • 2000.05a
    • /
    • pp.172-179
    • /
    • 2000
  • The automatic/driverless operation which are great important techniques in metro railway are required to increase higher safety, greater reliability, and transport capacity. To satisfy such demands, we must have the system design iかd testing technique for the railway system operation. These techniques are related to the onboard train control and communication systems which include TCMS(Train Control md Monitoring System), ATO(Automatic train Operation), ATC(Automatic train Control), and TWC(Train to wayside communication). These sub-systems must be interfacing with not only each others but also the signal system on the ground. We tested the train control system on Test line that has been developed on the basis of the standardized type EMU for korea railway systems. This test line which is located in Sangju, have been constructed for testing 7 & 8 line of Seoul Metro railway.

  • PDF

Run-time comparison of Tilting train with Non-tilting train on the Jungang-line between Cheongnyangni and Youngju (일반 EMU열차와 틸팅 EMU열차의 운전시간 비교: 중앙선 청량리~영주 구간)

  • Rho, Hag-Lae
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.1227-1234
    • /
    • 2011
  • Korea is a mountainous country, with as much as 70% of the area is covered by hills and mountains. This geography places constraints on the minimum radius of curvature for the rail network. It was expected that the speed of trains could be enhanced on the existing railway network without a huge investment in infrastructure by using tilting trains. The development of tilting trains in Korea started in 2001 as research & development project. A 6-car prototype test tilting train, called the Tilting Train eXpress (TTX), was built in December 2006 and experimental trials began in 2007. TTX has distributed power, is designed to run at 200 km/h, and has a planned service speed of 180 km/h. In this paper, we first describe the performance of tilting train, and then present the estimated running times, and the time saving compared with today's conventional trains and non-tilting trains, based on the Jungang line. So the time saving could be separated into two effects by higher track top-speed and tilting devices.

  • PDF

Study of Tilting Train Pantograph Control System for EMU

  • Lee, Su-Gii;Han, Seong-Ho;Koo, Dong-Hea;Lee, Woo-Dong;Han, Yong-Jae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1754-1756
    • /
    • 2003
  • This paper describes the pantograph design result for tilting train at conventional railway. EMU(Electrical Multiple Unit) Tilting Train is important tilting pantograph. Tilting train pantograh should be operated to commercial service speed 180Km/h of 200Km/h at KNR upgrade railroad. This paper is written about train pantograph control system

  • PDF

A Study on Crashworthiness of Rubber Tired AGT (고무차륜 경량전철의 충돌안전도 연구)

  • 구정서;조현직;이현순
    • Proceedings of the KSR Conference
    • /
    • 2001.05a
    • /
    • pp.200-206
    • /
    • 2001
  • In the standard specifications for the urban EMU(Electric Multiple Unit) train, there are several items to ensure safety against accidents. The 21th -23th items have much relation with the crashworthiness of the urban EMU train. In this study, the rubber- tired AGT(Automated Guide-way Transit System) under development by KRRI is numerically evaluated in a crashworthy point of view by applying the above crashworthiness items. The numerical results show the detail design of the AGT satisfies the 22th and 23th items. But the design is recommended to adopt mechanical fuses to reduce the impact accelerations with respect to the 21th item.

  • PDF

Technical specification of Electric Multiple Unit with Tilting Express (전기식 틸팅차량(TTX)의 구성 및 기술사양)

  • Han Seong-ho
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.04a
    • /
    • pp.30-33
    • /
    • 2004
  • This paper suggested that the technical specification of tilting train EMU for speed up on existing lines. High speed strategy of existing lines are the modification of railway system which are made on cant, lengths of transition curves, the catenary system and train system. Tilting technology is more useful a strategy for speed increases on existing lines with low investment needed. We performed a feasibility study which is considered out real track conditions and designed propulsion and braking system of tilting EMU system.

  • PDF

Verification of Running Safety Evaluation Method for High-speed Railway (고속열차 주행안전성 평가법에 대한 검증 연구)

  • Ryu, Sang-Hyun;Kim, Sang-Soo;Kim, Dae-Sik;Kim, Sang-Young;Hong, June-Hee;Lee, Ki-Jun
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.3
    • /
    • pp.310-317
    • /
    • 2014
  • The Next-generation High-speed Rail Technology Development Project was started in 2007 by the Korean Government with the aim of developing the core technologies for a high-speed electric multiple unit (EMU) railway system. This is the first attempt to develop a high-speed EMU railway. High-speed EMU trains have superior acceleration and deceleration compared to push-pull high-speed railways such as KTX(Korean Train eXpress). A prototype train was developed and tested on a high-speed line starting in 2012. The new train must maintain running safety during the test. Generally, the international standard (UIC518) is adopted to evaluate the running safety of trains. This method suggests that the test zone must have over 25 sections, and the length of each section must be 500 m. However, it is difficult to implement these test conditions for a real high-speed line. In this study, we analyzed the running safety using several test section lengths (100 m to 500 m) and compared the results. The results of this study will be used to establish a running safety evaluation method for high-speed EMU railways.

Vibration Analysis of High-Speed EMU Car Body Using Equivalent Stiffness and Shell Element (등가강성과 Shell 요소를 이용한 분산형 고속전철의 차체 진동 해석)

  • Baek, Seung-Guk;Shin, Bum-Sik;Choi, Jin-Hwan;Lee, Sang-Won;Choi, Yeon-Sun;Koo, Ja-Choon
    • Proceedings of the KSR Conference
    • /
    • 2009.05b
    • /
    • pp.217-222
    • /
    • 2009
  • High-speed EMU under development vibrates more than a articulated high-speed train since power units are attached on each vehicle and railway vehicle. In this study, anisotropic equivalent stiffness of a aluminum extrusion plate were calculated to know and predict vibration characteristic of High-speed EMU under development. Eigen frequencies and modal shape of high speed train vehicle were calculated. And vibration generated was predicted at each position of vehicle when vehicle was operating.

  • PDF

A study on advanced EMU's development by upgrading core equipment (전동차 핵심장치를 업그레이드한 차세대전동차 개발)

  • Kim, Young-Kyu;Park, Se-Young;Kim, Kwan-Soo;Song, Jeong-Hun;Cho, Seong-Kun;Lee, Han-Min
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.1364-1371
    • /
    • 2011
  • Advanced EMU completed a production of test train, composed of 6 cars, after 5 years of development process, and it is currently under the process of integrated test and evaluation to inspect performance of car system, efficiency of transport, safety, punctuality, energy efficiency in accordance with urban railways act at Daebul test line. Advanced EMU was produced under consideration of transportation capacity, maintainability, reliability, energy saving, convenience of passengers, and traffic-vulnerables, so it has an epochal difference from former EMU system. And advanced EMU assures operation management from manager's perspective and efficiency of maintenance for practicalization of car and individual equipment. This paper introduces each major equipment of advanced EMU which is based on many years of experience of management and maintenance.

  • PDF

A Transformer Design and Magnetic Analysis Model for the High-Speed EMU (동력분산형 고속철도용 변압기 설계 및 자계해석 모델)

  • Park, Byoung-Gun;Hyun, Dong-Seok
    • Proceedings of the KSR Conference
    • /
    • 2009.05b
    • /
    • pp.517-524
    • /
    • 2009
  • This paper proposes a magnetic analysis model and design method of transformer for the high-speed EMU. It has a many part of the consideration in design because the transformer in high-speed train has the multiple output. Also the output characteristic, weight, and size of transformer is an important factor. This research proposes a design method of transformer in high-speed EMU. And it is easy to design by using the analysis model in design the transformer through the establishment of the magnetic analysis model.

  • PDF

Reliability software design techniques of the Train Control and Monitoring System(TCMS) for the Standard type K-EMU (한국형 표준전동차 종합제어장치(TCMS)의 신뢰성 소프트웨어 개발 기술)

  • 한성호;안태기;이수길;이관섭;최규형
    • Journal of the Korean Society for Railway
    • /
    • v.3 no.3
    • /
    • pp.147-153
    • /
    • 2000
  • The train control and monitoring system (TCMS) is an on board computer system in railway vehicles performing the control, supervisory and diagnostic functions of the complete train system. This system replaces a lot of hard-wired relays and minimizes the necessary vehicle wiring thus increasing the reliability of the train. It is also one of more important equipment on vehicle to implement much higher safety and reliability train system. We studied a software design technique of TCMS using a CASE tool that is a kind of safety critical software engineering tool (SCADE). This tool has mainly four functions such as the graphical editor, the document maker, tile automatically code generator, and the test simulator. The several functions of TCMS are implemented in this software easily programmed using a functional block diagram and a graphic programming language. We applied to automatically generated TCMS modules on the SCADE each functional block for the Standard type EMU in Korea. We performed the combination test using TCMS simulator and the running test in Seoul subway 7 Line. We proved that this technique is more useful for the software design of TCMS in urban transit

  • PDF