• Title/Summary/Keyword: EMTP-ATPDraw

Search Result 62, Processing Time 0.024 seconds

A Study and Analysis on the Switching Surge Using EMTP/ATPDraw in Combined Distribution Systems (혼합배전계통에서 EMTP/ATPDraw를 이용한 개폐서지 해석)

  • Lee, Jang-Geun;Lee, Jong-Beom;Lee, Jae-Bong;Kim, Beong-Suk
    • Proceedings of the KIEE Conference
    • /
    • 2005.11b
    • /
    • pp.280-282
    • /
    • 2005
  • This paper describes switching overvoltage generated during transient state in 22.9kV combined distribution systems. For analysis, distribution overhead line, underground cable and surge arrester are modeled using EMTP/ATPDraw. Simulation results show switching overvoltage according to various kind of parameter and systems such as closing angle and cable length.

  • PDF

A Study and Analysis on the Switching Surge Using a EMTP/ATPDraw in the Combined Distribution System (혼합배전계통에서 EMTP/APTDraw를 이용한 개폐서지 해석에 관한 연구)

  • Lee, Jang-Geun;Lee, Jong-Beom
    • Proceedings of the KIEE Conference
    • /
    • 2005.07a
    • /
    • pp.175-177
    • /
    • 2005
  • This paper analyzes transient behavior due to switching overvoltage in 22.9kV combined distribution systems. Computer models are consisted of distribution overhead line model, underground cable model and surge-arrester model in this paper. The computer models are made by EMTP/ATPDraw simulation and Line constants are calculated by ATP_LCC. This paper analyzes the various parameters affecting. These factors include closing angle and cable length.

  • PDF

Modelling and Performance Analysis of UPFC Using EMTP/ATPDraw (EMTP/ATPDraw를 이용한 UPFC구현 및 동작 분석)

  • Jang, Won-Hyeok;Lee, You-Jin;Rhee, Sang-Bong
    • Proceedings of the KIEE Conference
    • /
    • 2008.11a
    • /
    • pp.217-219
    • /
    • 2008
  • Among the Flexible AC Transmission Systems (FACTS) devices, Unified Power Flow Controller (UPFC) is considered as the most powerful and versatile one as it provides simultaneous, real time control of the transmission parameters, voltages, impedances, and phase angles which determine the power flow in AC transmission systems. This paper presents modelling of UPFC and describes its characteristics. The UPFC implemented in this paper is based on Sinusoidal Pulse Width Modulation (SPWM) and Electro-Magnetic Transients Program (EMTP)/ATPDraw is used to model and analyze it. The simulation results confirm advantages of UPFC in operational performance with respect to the steady state Power flow regulation and the transient stability control.

  • PDF

Surge Analysis Considering Variation of Line Configuration Factor in Combined Distribution Systems with Power Cables (혼합배전계통 선로구성요소 변화를 고려한 선로 서지해석)

  • Kim, Byong-Sook;Lee, Jang-Geun;Han, Byoung-Sung;Lee, Jong-Beom
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.3
    • /
    • pp.472-480
    • /
    • 2007
  • This paper analyzes overvoltage on testing line for various parameter effect examination. Model systems consist of overhead line and underground cable. The model considered actual characteristic data of distribution lines. and will be constructed at testing yard. The simulations were performed under various line configuration such as cable kinds, cable length, lightning wave, lightning wave time, transformer and branch circuits. The simulation models are established by EMTP/ATPDraw and Line Constants are calculated by ATP_LCC. When lightning surge strikes on conductor of overhead line, EMTP/ATPDraw calculates overvoltage in many cases. Simulation results will be compared with real testing results at testing yard. The compared results will be used to establish protection methods in actual underground distribution systems.

A Lightning Surge Analysis of Testing Line for Protection of Underground Distribution Systems (지중배전계통 보호를 위한 모의시험선로 서지특성 해석)

  • Kim Byoung-Sung;Lee Jang-Geun;Lee Jong-Beom;Han Byong-Sook
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.55 no.8
    • /
    • pp.313-321
    • /
    • 2006
  • This paper describes the overvoltage obtained by surge behavior analysis in testing underground distribution systems. Model systems consist of overhead distribution line and underground cable. Such model system considered various characteristics of actual distribution systems will be soon constructed at testing yard. Simulation is carried out under various states such as cable kinds, cable length, lightning wave and time, and branch circuits. Model is established by EMTP/ATPDraw. Line Constants are calculated by ATP_LCC. When the direct lightning surge strikes on conductor of overhead line, the overvoltage is calculated using EMTP/ATPDraw in many cases. Simulation results will be compared with real testing results at testing yard in the near future. The compared results will be used to establish protection methods in actual underground distribution systems.

Steady and Transient State Analysis on Three Phase-in One Enclosure Type HTS Cable (3상 일괄형 Pipe Type HTS 케이블의 정상 및 과도상태 해석)

  • Jang, Ju-Yeong;Lee, Jong-Beom;Kim, Yong-Kap
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.10
    • /
    • pp.1748-1753
    • /
    • 2010
  • This paper suggests an improved technique to establish the modeling regarding steady and transient state on three phase-in one cryostat type HTS(High Temperature Superconducting) cable. The proposed modeling is established using EMTP/ATPDraw and TACS and MODELS provided by that. It has higher accuracy than the conventional method, as the actual HTS cable is modelled. Steady and transient state analysis performed by EMTP/ATPDraw calculate the current of conductor, shield and former, respectively. In case of the transient state modeled quench state occurred by a single line-to-ground fault, current of conductor shield and former are also calculated, respectively. Especially, various fault resistances and angles are considered to improve the reliability during transient state analysis. Analysis results reveal that the proposed technique improves the accuracy of modeling.

An Analysis on the Overvoltage in Gas Insulated Transmission Lines with EMTP/ATPDraw (EMTP/ATPDraw를 이용한 가스절연송전선로(GIL)의 과전압 분석)

  • Park, Hung-Sok;Han, Sang-Ok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.5
    • /
    • pp.999-1004
    • /
    • 2011
  • Nowadays, it is becoming difficult to secure a transmission line route when a new transmission line is constructed due to social environment and resident complaints. As existing urban areas are expanded and new cities are constructed, the necessity of high-capacity underground power transmission has been increasing because of load concentration in downtown areas. In North America, Europe and Japan, the research has been carried out for 2nd generation gas insulated transmission lines(GIL) which is more environmentally friendly and economical compared to previous GILs. The new GILs have been applied to real power systems from early 2000s. In South Korea, GIL is being considered as a possible solution for replacing 345kV high-capacity overhead transmission lines with underground transmission ones, so KEPCO is planning to develop and apply a new 362kV rated GIL underground transmission lines instead of overhead transmission lines. In this paper, the overvoltage generated at the combined transmission line adapting GIL was reviewed using EMTP.

Analysis and Reduction Methods of Sheath Circulating Current in Underground Transmission Systems (지중송전계통에서 시스순환전류 해석 및 저감방안)

  • Jeong, Chae-Gyun;Lee, Jong-Beom;Gang, Ji-Won;Jang, Tae-In
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.50 no.11
    • /
    • pp.537-545
    • /
    • 2001
  • This paper describes the analysis of sheath circulating current and various methods to reduce the large circulating current in case of operating cable system using EMTP/ATPDraw. And also, possible methods are proposed through a detailed analysis regarding cable systems by considering various electrical and environmental factors. It is evaluated that the proposed reduction methods can be effectively applied to reduce the large sheath circulating over current with the minimized electrical problems.

  • PDF

Transient State Analysis of Faults Caused by Lightning Surge in Distribution Line (뇌서지에 의한 배전선로 고장 시 과도상태 분석)

  • Lim, Sung-Yong;Kim, Kyu-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.1
    • /
    • pp.51-57
    • /
    • 2016
  • This paper presents the voltage characteristics of the various faults after lightning surge hits the overhead grounding wire close to the transformer's secondary side. Based on the modeled distribution system, the cases of the various faults occurred by lightning surge are simulated using EMTP/ATPDraw and maximum overvoltage and RMS voltage according to the distances from the transformer are investigated. As a result, it is seen that the voltage characteristics of faults caused by lightning surge is different depending on the fault type and the voltage characteristics can be used to detect the fault type caused by lightning surge.

Study of Short-Circuit Currents Around Dĕtmarovice Power Station

  • Ali, Shehab Abdulwadood
    • Transactions on Electrical and Electronic Materials
    • /
    • v.15 no.3
    • /
    • pp.117-124
    • /
    • 2014
  • The calculation of short-circuit currents is important for power systems operation and restoration, and for determining the means to protect human lives and properties. In this paper, a part of a power system network, around the D$\breve{e}$tmarovice power station in Czech Republic, was simulated by the well known program EMTP-ATPDraw (Electromagnetic Transients Program-Alternative Transient Program), and short-circuit currents and voltages were calculated at different points in the electric network and presented as a time function by the PlotXY program. Calculations were done just for phase-to-ground, and for the three-phase short-circuit at the Kun$\check{c}$ice substation. The results were important for determining the characteristics of the equipment required to withstand or break the short-circuit current; for this reason, the calculations were repeated using earth-fault resistances only for the case of busbar KUN shown in Figs. 5 and 6.