• Title/Summary/Keyword: EMT-6 cell

Search Result 37, Processing Time 0.021 seconds

Physiological roles of N-acetylglucosaminyltransferase V (GnT-V) in mice

  • Miyoshi, Eiji;Terao, Mika;Kamada, Yoshihiro
    • BMB Reports
    • /
    • v.45 no.10
    • /
    • pp.554-559
    • /
    • 2012
  • Oligosaccharide modification by N-acetylglucosaminyltransferase-V (GnT-V), a glycosyltransferase encoded by the Mgat5 gene that catalyzes the formation of ${\beta}1$,6GlcNAc (N-acetylglucosamine) branches on N-glycans, is thought to be associated with cancer growth and metastasis. Overexpression of GnT-V in cancer cells enhances the signaling of growth factors such as epidermal growth factor by increasing galectin-3 binding to polylactosamine structures on receptor N-glycans. In contrast, GnT-V deficient mice are born healthy and lack ${\beta}1$,6GlcNAc branches on N-glycans, but develop immunological disorders due to T-cell dysfunction at 12-20 months of age. We have developed Mgat5 transgenic (Tg) mice (GnT-V Tg mice) using a ${\beta}$-actin promoter and found characteristic phenotypes in skin, liver, and T cells in the mice. Although the GnT-V Tg mice do not develop spontaneous cancers in any organs, there are differences in the response to external stimuli between wild-type and GnT-V Tg mice. These changes are similar to those seen in cancer progression but are unexpected in some aspects. In this review, we summarize what is known about GnT-V functions in skin and liver cells as a means to understand the physiological roles of GnT-V in mice.

Interaction between Trichomonas vaginalis and the Prostate Epithelium

  • Kim, Jung-Hyun;Han, Ik-Hwan;Kim, Sang-Su;Park, Soon-Jung;Min, Duk-Young;Ahn, Myoung-Hee;Ryu, Jae-Sook
    • Parasites, Hosts and Diseases
    • /
    • v.55 no.2
    • /
    • pp.213-218
    • /
    • 2017
  • Most men infected with Trichomonas vaginalis are asymptomatic and can remain undiagnosed and untreated. This has been hypothesized to result in chronic persistent prostatic infection. Adhesion of the protozoan organisms to mucosal cells is considered a first and prerequisite step for T. vaginalis infection. Adhesion of T. vaginalis to prostate epithelial cells has not yet been observed; however, there are several reports about inflammation of prostate epithelial cells induced by T. vaginalis. The aim of this study was to investigate whether adhesion and cytotoxicity of T. vaginalis are involved in inflammation of prostate epithelial cells. When RWPE-1 cells were infected with T. vaginalis (1:0.4 or 1:4), adhesion of T. vaginalis continuously increased for 24 hr or 3 hr, respectively. The cytotoxicity of prostate epithelial cells infected with T. vaginalis (RWPE-1: T. vaginalis=1:0.4) increased at 9 hr; at an infection ratio of 1:4, cytotoxicity increased after 3 hr. When the RWPE-1 to T. vaginalis ratio was 1:0.4 or 1:4, production of IL-$1{\beta}$, IL-6, CCL2, and CXCL8 also increased. Epithelial-mesenchymal transition (EMT) was verified by measuring decreased E-cadherin and increased vimentin expression at 24 hr and 48 hr. Taken together, the results indicate that T. vaginalis adhered to prostate epithelial cells, causing cytotoxicity, pro-inflammatory cytokine production, and EMT. Our findings suggest for the first time that T. vaginalis may induce inflammation via adhesion to normal prostate epithelial cells.

The Pentose Phosphate Pathway as a Potential Target for Cancer Therapy

  • Cho, Eunae Sandra;Cha, Yong Hoon;Kim, Hyun Sil;Kim, Nam Hee;Yook, Jong In
    • Biomolecules & Therapeutics
    • /
    • v.26 no.1
    • /
    • pp.29-38
    • /
    • 2018
  • During cancer progression, cancer cells are repeatedly exposed to metabolic stress conditions in a resource-limited environment which they must escape. Increasing evidence indicates the importance of nicotinamide adenine dinucleotide phosphate (NADPH) homeostasis in the survival of cancer cells under metabolic stress conditions, such as metabolic resource limitation and therapeutic intervention. NADPH is essential for scavenging of reactive oxygen species (ROS) mainly derived from oxidative phosphorylation required for ATP generation. Thus, metabolic reprogramming of NADPH homeostasis is an important step in cancer progression as well as in combinational therapeutic approaches. In mammalian, the pentose phosphate pathway (PPP) and one-carbon metabolism are major sources of NADPH production. In this review, we focus on the importance of glucose flux control towards PPP regulated by oncogenic pathways and the potential therein for metabolic targeting as a cancer therapy. We also summarize the role of Snail (Snai1), an important regulator of the epithelial mesenchymal transition (EMT), in controlling glucose flux towards PPP and thus potentiating cancer cell survival under oxidative and metabolic stress.

Platelet-Derived Growth Factor Receptor-α Subunit Targeting Suppresses Metastasis in Advanced Thyroid Cancer In Vitro and In Vivo

  • Lin, Ching-Ling;Tsai, Ming-Lin;Chen, Yu-hsin;Liu, Wei-Ni;Lin, Chun-Yu;Hsu, Kai-Wen;Huang, Chien-Yu;Chang, Yu-Jia;Wei, Po-Li;Chen, Shu-Huey;Huang, Li-Chi;Lee, Chia-Hwa
    • Biomolecules & Therapeutics
    • /
    • v.29 no.5
    • /
    • pp.551-561
    • /
    • 2021
  • Thyroid cancer is the most common endocrine malignancy. Patients with well-differentiated thyroid cancers, such as papillary and follicular cancers, have a favorable prognosis. However, poorly differentiated thyroid cancers, such as medullary, squamous and anaplastic advanced thyroid cancers, are very aggressive and insensitive to radioiodine treatment. Thus, novel therapies that attenuate metastasis are urgently needed. We found that both PDGFC and PDGFRA are predominantly expressed in thyroid cancers and that the survival rate is significantly lower in patients with high PDGFRA expression. This finding indicates the important role of PDGF/PDGFR signaling in thyroid cancer development. Next, we established a SW579 squamous thyroid cancer cell line with 95.6% PDGFRA gene insertion and deletions (indels) through CRISPR/Cas9. Protein and invasion analysis showed a dramatic loss in EMT marker expression and metastatic ability. Furthermore, xenograft tumors derived from PDGFRA geneedited SW579 cells exhibited a minor decrease in tumor growth. However, distant lung metastasis was completely abolished upon PDGFRA gene editing, implying that PDGFRA could be an effective target to inhibit distant metastasis in advanced thyroid cancers. To translate this finding to the clinic, we used the most relevant multikinase inhibitor, imatinib, to inhibit PDGFRA signaling. The results showed that imatinib significantly suppressed cell growth, induced cell cycle arrest and cell death in SW579 cells. Our developed noninvasive apoptosis detection sensor (NIADS) indicated that imatinib induced cell apoptosis through caspase-3 activation. In conclusion, we believe that developing a specific and selective targeted therapy for PDGFRA would effectively suppress PDGFRA-mediated cancer aggressiveness in advanced thyroid cancers.

Evaluation of Biological Characteristics of Neutron Beam Generated from MC50 Cyclotron (MC50 싸이클로트론에서 생성되는 중성자선의 생물학적 특성의 평가)

  • Eom, Keun-Yong;Park, Hye-Jin;Huh, Soon-Nyung;Ye, Sung-Joon;Lee, Dong-Han;Park, Suk-Won;Wu, Hong-Gyun
    • Radiation Oncology Journal
    • /
    • v.24 no.4
    • /
    • pp.280-284
    • /
    • 2006
  • $\underline{Purpose}$: To evaluate biological characteristics of neutron beam generated by MC50 cyclotron located in the Korea Institute of Radiological and Medical Sciences (KIRAMS). $\underline{Materials\;and\;Methods}$: The neutron beams generated with 15 mm Beryllium target hit by 35 MeV proton beam was used and dosimetry data was measured before in-vitro study. We irradiated 0, 1, 2, 3, 4 and 5 Gy of neutron beam to EMT-6 cell line and surviving fraction (SF) was measured. The SF curve was also examined at the same dose when applying lead shielding to avoid gamma ray component. In the X-ray experiment, SF curve was obtained after irradiation of 0, 2, 5, 10, and 15 Gy. $\underline{Results}$: The neutron beams have 84% of neutron and 16% of gamma component at the depth of 2 cm with the field size of $26{\times}26\;cm^2$, beam current $20\;{\mu}A$, and dose rate of 9.25 cGy/min. The SF curve from X-ray, when fitted to linear-quadratic (LQ) model, had 0.611 as ${\alpha}/{\beta}$ ratio (${\alpha}=0.0204,\;{\beta}=0.0334,\;R^2=0.999$, respectively). The SF curve from neutron beam had shoulders at low dose area and fitted well to LQ model with the value of $R^2$ exceeding 0.99 in all experiments. The mean value of alpha and beta were -0.315 (range, $-0.254{\sim}-0.360$) and 0.247 ($0.220{\sim}0.262$), respectively. The addition of lead shielding resulted in no straightening of SF curve and shoulders in low dose area still existed. The RBE of neutron beam was in range of $2.07{\sim}2.19$ with SF=0.1 and $2.21{\sim}2.35$ with SF=0.01, respectively. $\underline{Conclusion}$: The neutron beam from MC50 cyclotron has significant amount of gamma component and this may have contributed to form the shoulder of survival curve. The RBE of neutron beam generated by MC50 was about 2.2.

Deubiquitinase Otubain 1 as a Cancer Therapeutic Target (암 치료 표적으로써 OTUB1)

  • Kim, Dong Eun;Woo, Seon Min;Kwon, Taeg Kyu
    • Journal of Life Science
    • /
    • v.30 no.5
    • /
    • pp.483-490
    • /
    • 2020
  • The ubiquitin system uses ligases and deubiquitinases (DUBs) to regulate ubiquitin position on protein substrates and is involved in many biological processes which determine stability, activity, and interaction of the target substrate. DUBs are classified in six groups according to catalytic domain, namely ubiquitin-specific proteases (USPs); ubiquitin C-terminal hydrolases (UCHs); ovarian tumor proteases (OTUs); Machado Joseph Disease proteases (MJDs); motif interacting with Ub (MIU)-containing novel DUB family (MINDY); and Jab1/MPN/MOV34 metalloenzymes (JAMMs). Otubain 1 (OTUB1) is a DUB in the OTU family which possesses both canonical and non-canonical activity and can regulate multiple cellular signaling pathways. In this review, we describe the function of OTUB1 through regulation of its canonical and non-canonical activities in multiple specifically cancer-associated pathways. The canonical activity of OTUB1 inhibits protein ubiquitination by cleaving Lys48 linkages while its non-canonical activity prevents ubiquitin transfer onto target proteins through binding to E2-conjugating enzymes, resulting in the induction of protein deubiquitination. OTUB1 can therefore canonically and non-canonically promote tumor cell proliferation, invasion, and drug resistance through regulating FOXM1, ERα, KRAS, p53, and mTORC1. Moreover, clinical research has demonstrated that OTUB1 overexpresses with high metastasis in many tumor types including breast, ovarian, esophageal squamous, and glioma. Therefore, OTUB1 has been suggested as a diagnosis marker and potential therapeutic target for oncotherapy.

A Study on the Protective Effect and Its Mechanism of Zinc against Immuno-cytotoxicity of Methylmercury (유기수은의 세포면역독성과 이에 대한 아연의 방어효과 및 기전)

  • 고대하;염정호;오경재
    • Journal of Environmental Health Sciences
    • /
    • v.27 no.2
    • /
    • pp.82-91
    • /
    • 2001
  • This study was carried out to elucidate the protective effect of zinc chloride(ZnCl$_2$) and its mechanism against the immuno-cytotoxicity of methylmercury chloide($CH_3$HgCl). This study was observed in the culture of EMT-6 cells which are originated from mammary adenocarcinoma of Balb/c mouse. Cytotoxicity of metals was measured by cell viability and NO$_2$$^{[-10]}$ , and mitochondrial function was evaluated by adenosine triphosohate (ATP) production. $CH_3$HgCl significantly decreased the sythesis of nitric oxide(NO), ATP and glutathione(GSH) in a dose-dependent manner. ZnCl$_2$ significantly increased the synthesis of GSH in a dose-dependent manner, but synthesis of NO and ATP were not changed. The immuno-cytotoxicity of $CH_3$HgCl was not fully protected when combined addition of ZnCl$_2$, whereas ZnCl$_2$ prior to addition of $CH_3$HgCl completly protected the Hg-induced immuno-cytotoxicity. Similarly, intracellular accumulation of mercury significantly decreased by ZnCl$_2$. Degree of diminution of intracellular mercury was larger in ZnCl$_2$ prior to addition of $CH_3$HgCl than in combined addition of ZnCl$_2$ and $CH_3$HgCl.. Dithiothreitol(DTT) or buthionine sulfoximine(BSO) addition at 50$\mu$M or less, which was not toxic to the cells, did not affect synthesis of NO and ATP. DTT increased intracellular GSH level and DTT pretreatment protected toxicity induced by $CH_3$HgCl as shown complete recover in the NO and ATP values. BSO decreased intracellular GSH level and BSO pretreatment exaggerated toxicity induced by $CH_3$HgCl as shown synergistic reduction in the NO and ATP values. These results indicated that the protective effects of zinc against immuno-cytotoxicity of methylmercury associated with increasing cellular level of GSH. Increased intracellular GSH transports methylmercury to out of cells. In accordance with intracellular level of mercury decreased, immuno-cytotoxicity of methylmercury decreased. These result also suggest that the protective mechanism of zinc against the mercury toxicity would be exerted in the immune system in vivo.

  • PDF