• Title/Summary/Keyword: EMG-to-force

Search Result 187, Processing Time 0.026 seconds

A Novel System with EMG-controlled FES Enhanced Gait Function and Energy Expenditure for Older Adults

  • Jang-hoon Shin;Hye-Kang Park;Joonyoung Jung;Dong-Woo Lee;Hyung cheol Shin;Hwang-Jae Lee;Wan-hee Lee
    • Physical Therapy Rehabilitation Science
    • /
    • v.13 no.2
    • /
    • pp.152-162
    • /
    • 2024
  • Objective: This study was conducted to analyze the effect of wearable Electromyography-controlled functional electrical stimulation (EMG-controlled FES) System on Gait Function and cardiopulmonary metabolic efficiency during walking in older adults. Design: Cross-section study Methods: Total 22 older adult participants suitable to selection criteria of this study participated in this study. The EMG-controlled FES System, which functions as a wearable physical activity assist FES system was used. All participations performed randomly assigned two conditions (Non-FES assist [NFA], FES assist [FA]) of walking. In all conditions, spatio-temporal parameters and kinematics and kinetics parameters during walking was collected via 3D motion capture system and 6 minutes walking test (6MWT) and metabolic cost during walking and stairs climbing was collected via a portable metabolic device (COSMED K5, COSMED Srl, Roma, Italy). Results: In Spatio-temporal parameters aspects, The EMG-controlled FES system significantly improved gait functions measurements of older adults with sarcopenia at walking in comparison to the NFA condition (P<0.05). Hip, knee and ankle joint range of motion increased at walking in FA condition compared to the NFA condition (P<0.05). In the FA condition, moment and ground reaction force was changed like normal gait during walking of older adults in comparison to the NFA condition (P<0.05). The EMG-controlled FES system significantly reduced net cardiopulmonary metabolic energy cost, net energy expenditure measurement at stairs climbing (P<0.05). Conclusions: This study demonstrated that EMG-controlled FES is a potentially useful gait-assist system for improving gait function by making joint range of motion and moment properly.

Actuation of Artificial Muscle Based on IPMC by Electromyography (EMG) Signal

  • Lee, Myoung-Joon;Jung, Sung-Hee;Moon, In-Hyuk;Lee, Suk-Min;Mun, Mu-Sung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1173-1178
    • /
    • 2005
  • This paper proposes an IPMC actuating system with a bio-mimetic function. EMG signals generated by an intended contraction of muscles in forearm are used for the actuation of the IPMC. To obtain higher actuation force of the IPMC, the single layered as thick as 800 [${\mu}$m] or multi-layered IPMC (Nafion) of which each layer can be as thick as 178 [${\mu}$m] are prepared. The experimental results using an implemented IPMC control system show a possibility and a usability of the bio-mimetic artificial muscle.

  • PDF

Influence of Preferred Chewing Habit on Electromyographic Activity of Masticatory Muscles and Bite Force (편측저작이 저작근의 근활성도와 교합력에 미치는 영향)

  • Yang, Ho-Yeon;Shin, Jun-Han;Choi, Jong-Hoon;Ahn, Hyoung-Joon
    • Journal of Oral Medicine and Pain
    • /
    • v.30 no.1
    • /
    • pp.45-55
    • /
    • 2005
  • As people prefer to use right or left hand, some have preferred chewing side while others do not. Totally, 82 volunteers composed of students and staffs from Dental Hospital College of Dentistry Yonsei University participated in this study for the investigation of influence of preferred chewing habit, that has lasted for more than a year, on electromyographic(EMG) activity of masticatory muscles and bite force. Among the 82 volunteers, 46 had preferred chewing habit while the other 36 did not. Prior to the investigation, those with factors that could affect the study, such as, general disease, irregular dentition and malocclusion, were screened and excluded by questionnaire and clinical examination. The results were as follows: 1. There was no significant difference in EMG activities between chewing side and non-chewing side of preferred chewing subjects at rest as well as maximal voluntary contraction(MCV)(p>0.05). 2. Asymmetrical coefficient of temporal and masseter muscle EMG activities between preferred chewing subjects and non-preferred chewing subjects at rest was not significantly different(p>0.05). 3. Asymmetrical coefficient of masseter EMG activity was significantly higher(p<0.05) than that of non-preferred chewing subjects at MCV, whereas that of anterior temporal muscle showed no difference(p<0.05). 4. In preferred chewing subjects, there was no significant difference in average bite force and occlusal contact area between chewing side and non-chewing side(p>0.05). 5. There was no significant difference in Asymmetrical coefficients of average bite force and occlusal contact area between preferred chewing subjects and non-preferred chewing subjects (p>0.05). Consequently, preferred chewing habit can be considered as physiological asymmetry with normal function rather than to have influence on EMG muscle activity of masticatory muscles, average bite force and occlusal contact area. Objective standardization to differentiate preferred chewing subjects and non-preferred chewing subjects should be established in the further study.

The Effect of Spor ts Taping on Lower Extremity Muscles in Ver tical Jump (수직점프 시 스포츠 테이핑이 하지의 운동학적 변인에 미치는 영향)

  • Lee, Jong-Hun;Lee, Young-Sik
    • Korean Journal of Applied Biomechanics
    • /
    • v.20 no.4
    • /
    • pp.407-414
    • /
    • 2010
  • The purpose of this study was to evaluate the effect of taping-tape with or without using spiral taping on vertical jump. The subjects for this study were about 20 years old healthy male college students without muscloskeletal diseases. Data for EMG activity and Ground Reaction Force(GRF) were estimated at three knee angles(i.e., 45, 90 & full degree). As a result, there was no statistical significance in max GRF at 90 and full degree regardless of spiral taping-tape. On the other hand, statistical significance was found when vertically jumping at 45 degree knee angle(p<.05). All the data for EMG activity at the three knee angles were not statistically significant, but there was a trend for a decrease in average EMG activity in elector spinae & Medial gastrocnemius at 90 degree knee angle. Based on these data, initial flexor action of knee was stabilized with spiral taping-tape when vertically jumping, resulting in improved muscular activity in Medial gastrocnemius. In conclusion, taping technique for jumping ability associated muscles like quadriceps is also required to develop.

Development and evaluation of estimation model of ankle joint moment from optimization of muscle parameters (근육 파라미터 최적화를 통한 발목관절 모멘트 추정 모델 개발 및 평가)

  • Son, J.;Hwang, S.;Lee, J.;Kim, Y.H.
    • Journal of Biomedical Engineering Research
    • /
    • v.31 no.4
    • /
    • pp.310-315
    • /
    • 2010
  • Estimation of muscle forces is important in biomechanics, therefore many researchers have tried to build a muscle model. Recently, optimization techniques for adjusting muscle parameters, i.e. EMG-driven model, have been used to estimate muscle forces and predict joint moments. In this study, an EMG-driven model based on the previous studies has been developed and isometric and isokinetic contraction movements were evaluated to validate the developed model. One healthy male participated in this study. The dynamometer tasks were performed for maximum voluntary isometric contractions (MVIC) for ankle dorsi/plantarflexors, isokinetic contraction at both $30^{\circ}/s$ and $60^{\circ}/s$. EMGs were recorded from the tibialis anterior, gastrocnemius medialis, gastrocnemius lateralis and soleus muscles at the sampling rate of 1000 Hz. The MVIC trial was used to customize the EMG-driven model to the specific subject. Once the subject's own model was developed, the model was used to predict the ankle joint moment for the other two dynamic movements. When no optimization was applied to characterize the muscle parameters, weak correlations were observed between the model prediction and the measured joint moment with large RMS error over 100% (r = 0.468 (123%) and r = 0.060 (159%) in $30^{\circ}/s$ and $60^{\circ}/s$ dynamic movements, respectively). However, once optimization was applied to adjust the muscle parameters, the predicted joint moment was highly similar to the measured joint moment with relatively small RMS error below 40% (r = 0.955 (21%) and r = 0.819 (36%) and in $30^{\circ}/s$ and $60^{\circ}/s$ dynamic movements, respectively). We expect that our EMG-driven model will be employed in our future efforts to estimate muscle forces of the elderly.

Variation of the Muscle Activity of Erector Spinalis and Multifidus According to Their Respective Cueing When Performing Tasks, Including Tactile Stimulation in Prone Position

  • Gam, Byeong-Uk;Song, Changho
    • Physical Therapy Rehabilitation Science
    • /
    • v.11 no.1
    • /
    • pp.88-96
    • /
    • 2022
  • Objective: Purpose of this study was to compare muscle activity ratio of multifidus to erector spinalis according to various cueing including tactile stimulation to provide an effective strategy to provide verbal and tactile feedback during exercise to provoke multifidus muscle activation. Design: Cross-sectional study. Methods: Participants of this study included 28 healthy adults. Muscle activities of the multifidus and erector spinalis were measured while the participants performed tasks according to the three different methods of verbal cueing and three different tactile stimulation. Surface EMG was used to measure the muscular activity of the muscles during all the tasks. Results: Tactile stimulation to abdomen and lumbar vertebrae showed no significant difference in the muscle activity ratio (p>0.05). However, muscle activity ratio of the multifidus in relation to the erector spinalis was increased when subjects were given verbal instructions to make lumbar curvature with little force and to make lumbar curvature while pulling navel (p<0.05). However, it was decreased when they were provided with verbal instruction to make lumbar curvature with strong force (p<0.05). Conclusions: According to the results, proper verbal instruction was an effective tool to increase the muscular activity of multifidus. This study aimed to find and provide the most appropriate verbal cueing while doing exercises to activate multifidus.

Comparison of immediate complete denture, tooth and implant-supported overdenture on vertical dimension and muscle activity

  • Shah, Farhan Khalid;Gebreel, Ashraf;Elshokouki, Ali Hamed;Habib, Ahmed Ali;Porwal, Amit
    • The Journal of Advanced Prosthodontics
    • /
    • v.4 no.2
    • /
    • pp.61-71
    • /
    • 2012
  • PURPOSE. To compare the changes in the occlusal vertical dimension, activity of masseter muscles and biting force after insertion of immediate denture constructed with conventional, tooth-supported and Implant-supported immediate mandibular complete denture. MATERIALS AND METHODS. Patients were selected and treatment was carried out with all the three different concepts i.e, immediate denture constructed with conventional (Group A), tooth-supported (Group B) and Implant-supported (Group C) immediate mandibular complete dentures. Parameters of evaluation and comparison were occlusal vertical dimension measured by radiograph (at three different time intervals), Masseter muscle electromyographic (EMG) measurement by EMG analysis (at three different positions of jaws) and bite force measured by force transducer (at two different time intervals). The obtained data were statistically analyzed by using ANOVA-F test at 5% level of significance. If the F test was significant, Least Significant Difference test was performed to test further significant differences between variables. RESULTS. Comparison between mean differences in occlusal vertical dimension for tested groups showed that it was only statistically significant at 1 year after immediate dentures insertion. Comparison between mean differences in wavelet packet coefficients of the electromyographic signals of masseter muscles for tested groups was not significant at rest position, but significant at initial contact position and maximum voluntary clench position. Comparison between mean differences in maximum biting force for tested groups was not statistically significant at 5% level of significance. CONCLUSION. Immediate complete overdentures whether tooth or implant supported prosthesis is recommended than totally mucosal supported prosthesis.

Control of IPMC-based Artificial Muscle for Myoelectric Hand Prosthesis

  • Lee Myoung-Joon;Jung Sung-Hee;Moon Inhyuk;Lee Sukmin;Mun Mu-Seong
    • Journal of Biomedical Engineering Research
    • /
    • v.26 no.5
    • /
    • pp.257-264
    • /
    • 2005
  • This paper proposes an ionic polymer metal composite (IPMC) based artificial muscle to be applicable to the Myoelectric hand prosthesis. The IPMC consists of a thin polymer membrane with metal electrodes plated chemically on both faces, and it is widely applying to the artificial muscle because it is driven by relatively low input voltage. The control commands for the IPMC-based artificial muscle is given by electromyographic (EMG) signals obtained from human forearm. By an intended contraction of the human flexor carpi ulnaris and extensor carpi ulnaris muscles, we investigated the actuation behavior of the IPMC-based artificial muscle. To obtain higher actuation force of the IPMC, the single layered as thick as $800[{\mu}m]$ or multi-layered IPMC of which each layer can be as thick as $178[{\mu}m]$ are prepared. As a result, the bending force was up to the maximum 12[gf] from 1[gf] by actuating the single layered IPMC with $178[{\mu}m]$, but the bending displacement was reduced to 6[mm] from 30[mm]. The experimental results using an implemented IPMC control system show a possibility and a usability of the bio-mimetic artificial muscle.

Lumbar Disc Herniation Presented with Contralateral Symptoms

  • Kim, Pius;Ju, Chang Il;Kim, Hyeun Sung;Kim, Seok Won
    • Journal of Korean Neurosurgical Society
    • /
    • v.60 no.2
    • /
    • pp.220-224
    • /
    • 2017
  • Objective : This study aimed to unravel the putative mechanism underlying the neurologic deficits contralateral to the side with lumbar disc herniation (LDH) and to elucidate the treatment for this condition. Methods : From January 2009 to June 2015, 8 patients with LDH with predominantly contralateral neurologic deficits underwent surgical treatment on the side with LDH with or without decompressing the symptomatic side. A retrospective review of charts and radiological records of these 8 patients was performed. The putative mechanisms underlying the associated contralateral neurological deficits, magnetic resonance imaging (MRI), electromyography (EMG), and the adequate surgical approach are discussed here. Results : MRI revealed a similar laterally skewed paramedian disc herniation, with the apex deviated from the symptomatic side rather than directly compressing the nerve root; this condition may generate a contralateral traction force. EMG revealed radiculopathies in both sides of 6 patients and in the herniated side of 2 patients. Based on EMG findings and the existence of suspicious lateral recess stenosis of the symptomatic side, 6 patients underwent bilateral decompression of nerve roots and 2 were subjected to a microscopic discectomy to treat the asymptomatic disc herniation. No specific conditions such as venous congestion, nerve root anomaly or epidural lipomatosis were observed, which may be considered the putative pathomechanism causing the contralateral neurological deficits. The symptoms resolved significantly after surgery. Conclusion : The traction force generated on the contralateral side and lateral recess stenosis, rather than direct compression, may cause the contralateral neurologic deficits observed in LDH.

Gait Phases Detection from EMG and FSR Signals in Walkingamong Children (근전도와 저항 센서를 이용한 보행 단계 감지)

  • Jang, Eun-Hye;Chi, Su-Young;Lee, Jae-Yeon;Cho, Young-Jo;Chun, Byung-Tae
    • Science of Emotion and Sensibility
    • /
    • v.13 no.1
    • /
    • pp.207-214
    • /
    • 2010
  • The aim of this study was to investigate upper and lower limb muscle activity using EMG(electromyogram) sensors while walking and identify normal gait pattern using FSR(force sensing resistor) sensor. Fifteen college students participated in this study and their EMG and FSR signal were measured during stopping and walking trials. EMG signals from upper(pectoralis major and trapezius) and lower limbs(rectus femoris, biceps femoris, vastus medialis, vastus lateralis, semimembranosus, semitendinosus, soleus, peroneus longus, gastrocnemius medialis, and gastrocnemius lateralis) were obtained using the surface electrodes. FSR measured pressures on 8 areas of the sole of the foot during walking. EMG results showed that all muscle activities except for vastus lateralis and semimembranosus during walking had higher amplitudes than stopping. Additionally, muscle activities associated with stance and swing phase during walking were identified. Results on FSR showed that stance and swing phases were detected by FSR signals during a gait cycle. Eight gait phases-initial contact, loading response, mid stance, terminal stance, pre swing, initial swing, mid swing, and terminal swing- were classified.

  • PDF