• Title/Summary/Keyword: EMG signal

Search Result 327, Processing Time 0.026 seconds

Effects of Segmentation Size on the Stationarity of Electromyographic Signal in Runs Test (런 검정을 사용한 근전도 신호의 안정성 평가 시 분할 크기가 신호의 안정성에 미치는 영향)

  • Cho, Young-Jin;Kim, Jung-Yong
    • Journal of the Ergonomics Society of Korea
    • /
    • v.29 no.4
    • /
    • pp.667-671
    • /
    • 2010
  • Runs test is a mathematical tool to test the stationarity of electromyographic (EMG) signals. The purpose of this study is to investigate the effects of segmentation size on the stationarity of EMG signals in runs test. Six subjects participated in this experiment and performed isometric trunk exertions for twenty seconds at the load level of 25% and 50% MVC. The signals extracted from the erector spinae muscles were divided into the intervals of 1000ms and the stationarity of the signal in each interval was tested by the runs test. In this test, seven segmentation sizes such as 1.0, 2.0, 3.9, 7.8, 15.6, 31.3 and 62.5ms were applied. Additionally, two stationarity tests of reverse arrangements test and modified reverse arrangements test were used to verify the results of the runs test. In results, the segmentation size of 62.5ms showed the similar results with the other stationarity tests. However, the stationarity values among there tests were different each other when segmentation sizes other than 62.5ms were used. These results indicated the effect of segmentation size in runs test that needs to be considered to have consistent and sensitive result in stationarity test.

Electromyography Pattern Recognition and Classification using Circular Structure Algorithm (원형 구조 알고리즘을 이용한 근전도 패턴 인식 및 분류)

  • Choi, Yuna;Sung, Minchang;Lee, Seulah;Choi, Youngjin
    • The Journal of Korea Robotics Society
    • /
    • v.15 no.1
    • /
    • pp.62-69
    • /
    • 2020
  • This paper proposes a pattern recognition and classification algorithm based on a circular structure that can reflect the characteristics of the sEMG (surface electromyogram) signal measured in the arm without putting the placement limitation of electrodes. In order to recognize the same pattern at all times despite the electrode locations, the data acquisition of the circular structure is proposed so that all sEMG channels can be connected to one another. For the performance verification of the sEMG pattern recognition and classification using the developed algorithm, several experiments are conducted. First, although there are no differences in the sEMG signals themselves, the similar patterns are much better identified in the case of the circular structure algorithm than that of conventional linear ones. Second, a comparative analysis is shown with the supervised learning schemes such as MLP, CNN, and LSTM. In the results, the classification recognition accuracy of the circular structure is above 98% in all postures. It is much higher than the results obtained when the linear structure is used. The recognition difference between the circular and linear structures was the biggest with about 4% when the MLP network was used.

Correlation between Muscular Fatigue and EMG Activity during the Prolonged Casual Computer Work

  • Cho, Won-Hak;Lee, Woo-Yong;Choi, Hyeon-Ki
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.3
    • /
    • pp.224-229
    • /
    • 2009
  • An experimental study was conducted to investigate the effects of turtle neck syndrome, so called, on muscular fatigue and muscle activity. Six subjects (males) participated and performed the prolonged casual computer work in the study. EMG signals from six muscles of the dominant neck-back region were acquired and recorded for 10 seconds at the beginning and the end of three hours computer work. EMG was recorded from six muscles by using a computerized data recording and analysis system. Power spectrum function of EMG was calculated off-line by means of a signal processing software package. Power spectrum functions were smoothed with a moving average filter of 21 points and normalized with respect to the maximal value achieved during the trials. Muscle activity and median frequencies of Sternocleidomastoid(SCM) in turtle neck posture was approximately 51%, which were less than those in normal neck posture. SCM also showed the biggest decrease in median frequency. Results will provide the insight into the neck-back injury mechanism of turtle neck patients. Furthermore, they will be helpful in developing rehabilitation programs for restoring patients' neck-back functions.

A Biomechanical Analysis According to Passage of Rehabilitation Training Program of ACL Patients (전방십자인대 수술자의 재활트레이닝 경과에 따른 운동역학적 분석)

  • Jin, Young-Wan
    • Korean Journal of Applied Biomechanics
    • /
    • v.23 no.3
    • /
    • pp.235-243
    • /
    • 2013
  • The purpose of this study was to analyse scientific according to period of rehabilitation training of ACL patients. ACL patients seven subjects participated in this study. Gait (1.58 m/sec) analysis was performed by using a 3-D Cinematography, a Zebris system and a electromyograph system. The data were analyzed by paired t-test. The joint angles were recorded from the ankle, knee, hip joints. Peak max dorsi-flexion and peak max plantar-flexion identified significant differences (p<0.05). Another angles were no significant difference. Vertical force (Fz) and max pressure variables improved 6 month RTP better than 3 month RTP. EMG were collected from 4 muscles (rectus femoris, biceps femoris, gastrocnemius, tibialis anterior) with surface electrides in gait system. EMG signals were rectified and smoothed data. EMG signas were no significant difference but they also improved 6 month RTP better than 3 month RTP. More research is necessary to determine exactly what constitutes optimal rehabilitation training period for ACL patients.

Gait Phase Recognition based on EMG Signal for Stairs Ascending and Stairs Descending (상·하향 계단보행을 위한 근전도 신호 기반 보행단계 인식)

  • Lee, Mi-Ran;Ryu, Jae-Hwan;Kim, Sang-Ho;Kim, Deok-Hwan
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.3
    • /
    • pp.181-189
    • /
    • 2015
  • Powered prosthesis is used to assist walking of people with an amputated lower limb and/or weak leg strength. The accurate gait phase classification is indispensable in smooth movement control of the powered prosthesis. In previous gait phase classification using physical sensors, there is limitation that powered prosthesis should be simulated as same as the speed of training process. Therefore, we propose EMG signal based gait phase recognition method to classify stairs ascending and stairs descending into four steps without using physical sensors, respectively. RMS, VAR, MAV, SSC, ZC, WAMP features are extracted from EMG signal data and LDA(Linear Discriminant Analysis) classifier is used. In the training process, the AHRS sensor produces various ranges of walking steps according to the change of knee angles. The experimental results show that the average accuracies of the proposed method are about 85.6% in stairs ascending and 69.5% in stairs descending whereas those of preliminary studies are about 58.5% in stairs ascending and 35.3% in stairs descending. In addition, we can analyze the average recognition ratio of each gait step with respect to the individual muscle.

A Study on the Mode Change Technique of Intelligent Above-Knee Prosthesis Based on User Intention Capture (지능형 대퇴 의족 사용자의 의도 검출을 통한 제어 모드 변경 기법에 관한 연구)

  • Shin, Jin-Woo;Eom, Su-Hong;You, Jung-Hwun;Lee, Eung-Hyuk
    • Journal of IKEEE
    • /
    • v.24 no.3
    • /
    • pp.754-765
    • /
    • 2020
  • Currently, Intelligent femoral prostheses that support the corresponding mode in walking and specific movements are being studied. Certain controls such as upstairs, sitting, and standing require a technique to classify control commands based on the user's intention because the mode must be changed before the operation. Therefore, in this paper, we propose a technique that can classify various control commands based on the user's intention in the intelligent thigh prosthesis system. If it is determined that the EMG signal needs to be compensated, the proposed technique compensates the EMG signal using the correlation between the strength and frequency components of the normal EMG signal and the muscle volume estimated by the pressure sensor. Through the experiment, it was confirmed that the user's intention was accurately detected even in the situation where muscle fatigue was accumulated. Improved intention detection techniques allow five control modes to be distinguished based on the number of muscle contractions within a given period of time. The results of the experiment confirmed that 97.5% accuracy was achieved through muscle tone compensation even if the strength of the muscle signal was different from normal due to muscle fatigue after exercise.

A Study of Gait Imbalance Determination System based on Encoder, Accelerometer and EMG sensors (인코더, 가속도, 근전도 센서 기반의 보행불균형 판단 시스템 연구)

  • Park, Yong-Deok;Kim, Sang-Kyun;Kwon, Jang-Woo;Lee, Sang-Min
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.10 no.2
    • /
    • pp.155-162
    • /
    • 2016
  • The purpose of this study was to determine the walking imbalance using the EMG(electromyogram). To confirm the effectiveness of the proposed encoder and acceleration, EMG sensor based gait imbalance determination system. This experiment was carried out to evaluation with a healthy adult male to 10 people. The Encoder device is attached to the hip and knee joint in order to measure the gait signal. The Accelerometer sensors are attached on the ankle. The EMG sensors are attached on the vastus lateralis and anterior tibialis. SI(Symmetry Index) was used as an index for determining the gait imbalance. To confirm if the judgment has been made correctly, the heel, regarded as the cause of unbalanced ambulation, was adjusted from 0 cm to 6 cm with intervals of 1.5 cm. In the cases of the encoder and the EMG, the difference of 0 cm and 1.5 cm is determined into normal walk but the other difference is distinguished into gait imbalance. In the case of the accelerometer, the difference of 0 cm, 1.5 cm and 3 cm is determined into normal walk but the other difference is distinguished into gait imbalance.

Effect of Applied Pressure Differences to Abdomen on Lumbar and Abdominal Muscle Activation During Upper Limb Exercise (상지운동 동안 복부에 적용된 압력 차이가 요부와 복부 근육 활성도에 미치는 영향)

  • Ko, Eun-Hye;Yoon, Hye-Sun;Cynn, Heon-Seock;Lee, Kang-Sung
    • Journal of Korean Physical Therapy Science
    • /
    • v.10 no.2
    • /
    • pp.96-103
    • /
    • 2003
  • The purpose of this study was to assess the effect of applied pressure to abdomen on lumbar and abdominal muscle activation during upper limb exercise. The experimental group consisted of twenty-seven healthy male subjects (mean age=$22.40{\pm}2.19years$, mean height=$175.30{\pm}2.19cm$, mean weight= $67.67{\pm}7.44kg$, RM=$8.43{\pm}2.76kg$). In each different pressure condition (OmmHg, 30mmHg, 70mmHg, 100mmHg), upper limb exercise was performed in total of 10 trials with 10 RM dumb-bell exercise. Lumbar and abdominal muscle activity was measured using surface bipolar electrode electromyography(EMG). EMG activity was measured from upper rectus abdominis, external oblique abdominis, internal oblique abdominis, and elector spinae. The raw EMG signal was processed into the root mean square(RMS). All RMS EMG data were normalized and express as a percentage of the EMG(%EMG). Collected data were statistically analyzed by SPSS/PC Ver 10.0 using two-way analysis of variance for repeated measures($4{\pm}3$) and Bonferroni post hoc, test. Lumbar and abdominal muscle activation was significantly increased when 100 mmHg was applied(p<.05). Upper rectus abdominis activation was significantly increased compared as other muscles activation(p<.05). However, there were no interaction between pressure and muscles(p>.05). The findings of this study can be used as a fundamental data when lumbar orthosis is applied and external pressure can be used as a therapeutic tool.

  • PDF

Comparison of Lower Extremity Electromyography and Ground Reaction Force during Gait Termination according to the Performance of the Stop Signal Task (정지신호과제의 수행에 따른 보행정지 시 다리 근전도 및 지면반발력 비교)

  • Koo, Dong-Kyun;Kwon, Jung-Won
    • PNF and Movement
    • /
    • v.20 no.1
    • /
    • pp.135-145
    • /
    • 2022
  • Purpose: The purpose of this study was to investigate the association between cognitive and motor inhibition by comparing muscle activity and ground reaction force during unplanned gait termination according to reaction time measured through the stop-signal task. Methods: Sixteen young adults performed a stop-signal task and an unplanned gait termination separately. The subjects were divided into fast and slow groups based on their stop-signal reaction time (SSRT), as measured by the stop-signal task. Electromyography (EMG) and ground reaction force (GRF) were compared between the groups during unplanned gait termination. The data for gait termination were divided into three phases (Phase 1 to 3). The Mann-Whitney U test was used to compare spatiotemporal gait parameters and EMG and GRF data between groups. Results: The slow group had significantly higher activity of the tibialis anterior in Phase 2 and Phase 3 than the fast group (p <0.05). In Phase 1, the fast group had significantly shorter time to peak amplitude (TPA) of the soleus than the slow group (p <0.05). In Phase 2, the TPA of the tibialis anterior was significantly lower in the fast group than the slow group (p <0.05). In Phase 3, there was no significant difference in the GRF between the two groups (p >0.05). There were no significant difference between the two groups in the spatiotemporal gait parameters (p >0.05). Conclusion: Compared to the slow group, the fast group with cognitive inhibition suppressed muscle activity for unplanned gait termination. The association between SSRT and unplanned gait termination shows that a participant's ability to suppress an incipient finger response is relevant to their ability to construct a corrective gait pattern in a choice-demanding environment.

Analysis of Moisture, Elasticity and EMG Change on Meridian Acupoints by Cupping(Negative Pressure) Stimulation (음압자극에 대한 경락의 근전도 및 경혈의 수분도.탄성도 변화 분석)

  • Kim, Soo-Byeong;Lee, Na-Ra;Joo, Yea-Il;Jung, Byung-Jo;Lee, Yong-Heum
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.12
    • /
    • pp.2747-2754
    • /
    • 2010
  • Cupping therapy has been used to extensive diseases. However, the research was yet to meridian and acupoint's change of state caused by Cupping. This study was considered a human-ripple effect by the anlaysis of meridian & acupoint's change of state. We developed the system which is keeps 30kPa Negative-pressure and stimulated on the Left Lung Meridian(LU) a halfway point between LU4 and LU5. We checked moisture and elasticity change on left/right acupoints & non-acupoints, then measured EMG Signal. We observed that moisture had little change(12.49%) and the better part of the elasticity on both sides had identified the change(64.42%). The number of the provoked acupoiunt elasticity change was more than non-acupoint. Also, elasticity change of Right side was more than Left side. We confirmed that RMS and Median Power change patterns were lower in proportional to the elastin change, but there was no significance about Median Frequency. Therefore inducing the change of elasticity and EMG signal on meridian-acupoints. Therefore, We checked the human-ripple effect Negative-pressure by the Cupping therapy.