• Title/Summary/Keyword: EMG Signals

Search Result 335, Processing Time 0.026 seconds

The Effect of Neuro-Muscular Control Training on Vastus Medialis Oblique Activity After Menisectomy of Knee : Case Study (무릎 반월판 절제술 후 신경근 조절 운동이 안쪽빗넓은근의 근활성에 미치는 영향 : 단일사례연구)

  • Kim, Gi-Chul;Seo, Hyun-Kyu
    • The Journal of Korean Academy of Orthopedic Manual Physical Therapy
    • /
    • v.20 no.1
    • /
    • pp.39-45
    • /
    • 2014
  • Background: The purpose of this study is to identify effects of neuro-muscular control training on vastus medialis oblique (VMO) after menisectomy of the knee. Methods: The subjects of this study are women aged 42 and 39 each who did menisectomy. Case 1 was applied quadriceps setting exercise and neuro-muscular contrlol training and case 2 was applied quadriecps setting. Intervention was done 5 times a week for 2 weeks. Measurement of muscle activity on VMO and vastus lateralis (VL) was standardized signals of each muscle to %RVC using surface EMG. Results: On comparison of exercise before and after on VMO and VL, VL activation of case 2 was increased more than case 1. Conclusion: Quadriecps-setting exercise and selective neuro-muscular control training of VMO is effective intervention on VMO activity and muscle activity ratio of VMO to VL.

Development of a Rehabilitation Robot for Mckenzie Cervical Exercise (경부 맥킨지 운동용 재활로봇의 개발)

  • Shin, Sang-Hyo;Moon, Inhyuk
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.10 no.1
    • /
    • pp.73-79
    • /
    • 2016
  • In this paper a cervical rehabilitation robot for Mckenzie exercises to be effective to neck pain relief is proposed. The robot has two degrees of freedom (DOF) for Lateral flexion and extension, Dorsal and Vental flexion which enable user to perform cervical stretching and isometric exercises for neck muscles. The mechanical parts of the cervical rehabilitation robot can be mounted on a back- or head-rest of chair, and user can perform the Mckenzie exercise with seated. In experiments we measured the range of motion of cervical part, EMG signals from neck muscles and the contact forces of a head bracket fixing the head part of user, and then evaluated their performances. From the experimental results, we showed a feasibility of the cervical rehabilitation robot proposed in this study.

Empirical Study of Air Conditioner Control Algorism for Comfort Sleeping (쾌적수면을 위한 에어컨 알고리즘에 관한 실증연구)

  • Kum, Jong-Soo;Kim, Dong-Gyu
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.12
    • /
    • pp.808-813
    • /
    • 2008
  • The study was to evaluate the air-conditioning of sleep algorithm. The algorithm was developed through the analysis of brain waves and MST, the experiments using air conditioner was performed in a apartment bedroom. Five female subjects were participated for the experiment. Eight hours of data collection a day was performed under different algorithm, case A, case B and case C. Physiological signals, EEG, ECG, EOG, and EMG, were obtained using polygraph and converted into digital signal. Then, subjects were asked to answer the questionnaire about their thermal sensation after experiment in bedroom. Sleep stages were classified, then TST, Sleep latency and Sleep efficiency were calculated for the three different air conditioner algorithm. As results, TST, Sleep efficiency, questionnaire showed the higher values for Case B algorism than that for other algorism. On the other hand, SWS latency was lower than for other conditions. Therefore, it was concluded that Case B of the algorithm was the best for comfortable and deep sleep.

The Effect of Noise and Background Music on the Trunk Muscle Fatigue during Dynamic Lifting and Lowering Tasks (들기/내리기 작업 시 소음과 배경음악이 몸통근육 피로도에 미치는 영향)

  • Kim, Jung-Yong;Shin, Hyun-Joo;Lee, In-Jae
    • Journal of the Ergonomics Society of Korea
    • /
    • v.27 no.3
    • /
    • pp.15-22
    • /
    • 2008
  • The purpose of this study was to define the effects of noise and background music on the trunk muscle fatigue during dynamic lifting and lowering tasks. Six healthy male subjects with no prior history of low back disorders participated in this study. The participants were exposed to two levels of background noise such as 40dB noise and 90dB noise and three levels of background music such as no music, slow music, and fast music. Six different combinations of background noise and background music were played while the participants were performing the lifting task at 15% level of Maximum Voluntary Contraction. Electromyography signals from six muscles were collected and fatigue levels were analyzed quantitatively. In results, the 90dB noise increased trunk muscle fatigue and slowed down the recovery. The trunk muscle fatigue was the lowest when the fast music was played for as background. After recovery, the 90dB noise increased trunk muscle fatigue. The trunk muscle fatigue was the lowest when the slow music was played for as background. The results can be useful to manage the cumulative fatigue of trunk muscles due to background noise and music during repetitive lifting and lowering tasks in industry.

Design of a Multiple Transmit Coil Driver for Implantable Telemetry Devices (원격 생체 측정 장치를 위한 다중 발신 코일 구동 드라이버 설계)

  • Ryu, Young Kee
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.7
    • /
    • pp.609-614
    • /
    • 2015
  • Implanted telemetry systems provide the ability to monitor different species of animals while they move within their cages. Species monitored include mice, rats, rabbits, dogs, pigs, primates, sheep, horses, cattle, and others. A miniature transmitter implanted in each animal measures one or more parameters. Parameters measured include arterial pressure, intra-pleural pressure, left ventricular pressure, intra-ocular pressure, bladder pressure, ECG, EMG, EEG, EOG, temperature, activity, and other parameters and transmits the data via radio frequency signals to a nearby receiver. Every conventional dedicated transmitter contains one or more sensors, cpu and battery. Due to the expected life of the battery, the measuring time is limited. To overcome these problems, electromagnetic inductive coupling based wireless power transmission technology using multiple transmit coils were proposed, with each coil having a different active area driven by the coil driver. In this research, a parallel resonance based coil driver and serial resonance based coil driver are proposed. From the experiments we see that the parallel coil driver shows better performance under a low impedance and multiple coils configuration. However, the serial coil driver is more efficient for high impedance transmit coils.

Gait Analysis of a Pediatric-Patient with Femoral Nerve Injury : A Case Study (대퇴신경 손상 환아의 보행분석 : 사례연구)

  • Hwang, S.H.;Park, S.W.;Son, J.S.;Park, J.M.;Kwon, S.J.;Choi, I.S.;Kim, Y.H.
    • Journal of Biomedical Engineering Research
    • /
    • v.32 no.2
    • /
    • pp.165-176
    • /
    • 2011
  • The femoral nerve innervates the quadriceps muscles and its dermatome supplies anteromedial thigh and medial foot. Paralysis of the quadriceps muscles due to the injury of the femoral nerve results in disability of the knee joint extension and loss of sensory of the thigh. A child could walk independently even though he had injured his femoral nerve severely due to the penetrating wound in the medial thigh. We measured and analyzed his gait performance in order to find the mechanisms that enabled him to walk independently. The child was eleven-year-old boy and he could not extend his knee voluntarily at all during a month after the injury. His gait analysis was performed five times (GA1~GA5) for sixteen months. His temporal-spatial parameters were not significantly different after the GA2 or GA3 test, and significant asymmetry was not observed except the single support time in GA1 results. The Lower limb joint angles in affected side had large differences in GA1 compared with the normal normative patterns. There were little knee joint flexion and extension motion during the stance phase in GA1 The maximum ankle plantar/dorsi flexion angles and the maximum knee extension angles were different from the normal values in the sound side. Asymmetries of the joint angles were analyzed by using the peak values. Significant asymmetries were found in GA1with seven parameters (ankle: peak planter flexion angle in stance phase, range of motion; ROM, knee: peak flexion angles during both stance and swing phase, ROM, hip: peak extension angle, ROM) while only two parameters (maximum hip extension angle and ROM of hip joint) had significant differences in GA5. The mid-stance valleys were not observed in both right and left sides of vertical ground reaction force (GRF) in the GA1, GA2. The loading response peak was far larger than the terminal stance peak of vertical ground reaction curve in the affected side of the GA3, GA4, GA5. The measured joint moment curves of the GA1, GA2, GA3 had large deviations and all of kinetic results had differences with the normal patterns. EMG signals described an absence of the rectus femoris muscle activity in the GA1 and GA2 (affected side). The EMG signals were detected in the GA3 and GA4 but their patterns were not normal yet, then their normal patterns were detected in the GA5. Through these following gait analysis of a child who had selective injuries on the knee extensor muscles, we could verify the actual functions of the knee extensor muscles during gait, and we also could observe his recovery and asymmetry with quantitative data during his rehabilitation.

Analyzing Heart Rate Variability for Automatic Sleep Stage Classification (수면단계 자동분류를 위한 심박동변이도 분석)

  • 김원식;김교헌;박세진;신재우;윤영로
    • Science of Emotion and Sensibility
    • /
    • v.6 no.4
    • /
    • pp.9-14
    • /
    • 2003
  • Sleep stages have been useful indicator to check a person's comfortableness in a sleep, But the traditional method of scoring sleep stages with polysomnography based on the integrated analysis of the electroencephalogram(EEG), electrooculogram(EOG), electrocardiogram(ECG), and electromyogram(EMG) is too restrictive to take a comfortable sleep for the participants, While the sympathetic nervous system is predominant during a wakefulness, the parasympathetic nervous system is more active during a sleep, Cardiovascular function is controlled by this autonomic nervous system, So, we have interpreted the heart rate variability(HRV) among sleep stages to find a simple method of classifying sleep stages, Six healthy male college students participated, and 12 night sleeps were recorded in this research, Sleep stages based on the "Standard scoring system for sleep stage" were automatically classified with polysomnograph by measuring EEG, EOG, ECG, and EMG(chin and leg) for the six participants during sleeping, To extract only the ECG signals from the polysomnograph and to interpret the HRV, a Sleep Data Acquisition/Analysis System was devised in this research, The power spectrum of HRV was divided into three ranges; low frequency(LF), medium frequency(MF), and high frequency(HF), It showed that, the LF/HF ratio of the Stage W(Wakefulness) was 325% higher than that of the Stage 2(p<.05), 628% higher than that of the Stage 3(p<.001), and 800% higher than that of the Stage 4(p<.001), Moreover, this ratio of the Stage 4 was 427% lower than that of the Stage REM (rapid eye movement) (p<.05) and 418% lower than that of the Stage l(p<.05), respectively, It was observed that the LF/HF ratio decreased monotonously as the sleep stage changes from the Stage W, Stage REM, Stage 1, Stage 2, Stage 3, to Stage 4, While the difference of the MF/(LF+HF) ratio among sleep Stages was not significant, it was higher in the Stage REM and Stage 3 than that of in the other sleep stages in view of descriptive statistic analysis for the sample group.

  • PDF

Ergonomic Design of Medic Work Table (MWT) for Medical Technologist

  • Choi, Kyeong-Hee;Lee, Sung-Yong;Lee, Jun-Hyub;Kong, Yong-Ku
    • Journal of the Ergonomics Society of Korea
    • /
    • v.35 no.6
    • /
    • pp.595-609
    • /
    • 2016
  • Objective: The purpose of this study was to develop and validate the guidelines for Medic Work Table (MWT) based on the anthropometric data of medical technologists. Background: Users' anthropometric data such as sitting height, sitting elbow height, knee height, and so on are significant factors for designing comfortable and useful furniture. Thus, many guidelines for different types of desks and chairs based on the users' anthropometric data have been suggested to many researchers. However, few researches have been conducted to provide design guidelines for MWT for blood collecting task. Medical technologists often use their upper extremities to perform blood collecting task with high repetitions. These repeated motions could be a critical factor in the prevalence rate of Work-related Musculoskeletal Disorders (WMSDs). Therefore, a study on ergonomic design of MWT would be essential in preventing the WMSDs and improving the quality of the working environment of medical technologists. Method: This study suggested design guidelines for ergonomic MWT by focusing on the heights of the upper side and underside, depths of the inside and outside, and width of MWT through anthropometric studies and literature reviews. Afterwards, a new MWT was made using the suggested design guidelines for this study. Five healthy medical technologists participated to evaluate the original MWT and new MWT. All participants took part in the range of motion (ROM) test, electromyography (EMG) muscle activity test, and usability test to validate the suggested guidelines in this study. EMG signals of related muscles (Flexor Carpi Ulnaris, Extensor Carpi Ulnaris, Deltoid Anterior, and Biceps Branchii) were recorded through the surface electromyography system from both the original MWT and the new MWT. The ROM test of the shoulder and elbow flexion was also assessed using motion sensors. Results: The newly designed MWT showed decreased ROMs of the shoulder and elbow up to 22% and 18% compared to the original MWT. The muscle activities in the new MWT also showed a decrease of 13% in Anterior Deltoid, 6% in Biceps Brachii, 5% in Flexor Carpi Ulnaris, and 8% in Extensor Carpi Ulnaris muscle groups, compared to the original MWT. In the usability test, the satisfaction score of the new MWT was also 56.1% higher than that of the original MWT. Conclusion: This study suggested guidelines for designing MWT and validating the guidelines through qualitative and quantitative analyses. The results of motion analysis, muscle activity, and usability tests demonstrated that the newly designed MWT may lead to less physical stress, less awkward posture, and better physical user interface. Application: The recommended guidelines of the MWT would be helpful information for designing an ergonomic MWT that reduces physical loads and improves the performance of many medical technologists.

CNN-LSTM-based Upper Extremity Rehabilitation Exercise Real-time Monitoring System (CNN-LSTM 기반의 상지 재활운동 실시간 모니터링 시스템)

  • Jae-Jung Kim;Jung-Hyun Kim;Sol Lee;Ji-Yun Seo;Do-Un Jeong
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.24 no.3
    • /
    • pp.134-139
    • /
    • 2023
  • Rehabilitators perform outpatient treatment and daily rehabilitation exercises to recover physical function with the aim of quickly returning to society after surgical treatment. Unlike performing exercises in a hospital with the help of a professional therapist, there are many difficulties in performing rehabilitation exercises by the patient on a daily basis. In this paper, we propose a CNN-LSTM-based upper limb rehabilitation real-time monitoring system so that patients can perform rehabilitation efficiently and with correct posture on a daily basis. The proposed system measures biological signals through shoulder-mounted hardware equipped with EMG and IMU, performs preprocessing and normalization for learning, and uses them as a learning dataset. The implemented model consists of three polling layers of three synthetic stacks for feature detection and two LSTM layers for classification, and we were able to confirm a learning result of 97.44% on the validation data. After that, we conducted a comparative evaluation with the Teachable machine, and as a result of the comparative evaluation, we confirmed that the model was implemented at 93.6% and the Teachable machine at 94.4%, and both models showed similar classification performance.

Estimation of Joint Moment and Muscle Force in Lower Extremity During Sit-to-Stand Movement by Inverse Dynamics Analysis and by Electromyography (역동역학해석 및 근전도 신호를 이용한 앉기-서기 동작에서의 하지 관절 모멘트 및 근력 예측)

  • Kim, Yoon-Hyuk;Phuong, Bui Thi Thanh
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.10
    • /
    • pp.1345-1350
    • /
    • 2010
  • Sit-to-stand movement is a basic movement in daily activities. On the basis of this movement, the biomechanical functions of a person can be evaluated. The study of the joint kinematics, moment, and muscle coordination is necessary to understand the characteristics of the sit-to-stand movement. We have developed a motion-based program for inverse dynamics analysis and the electromyogram-based program for muscle force prediction. The joint kinematics and the kinetic results estimated on the basis of obtained motion data, ground reaction force, and electromyogram signals were compared with those reported in previous studies, and the muscle forces determined by the two methods were compared with each other. The methods and programs developed in this study can be used to understand biomechanics and muscle coordination involved in basic movements in daily activities.