• Title/Summary/Keyword: EMF method

Search Result 373, Processing Time 0.018 seconds

Parallel Sensorless Speed Control using Flux-axis Current for Dual SPMSMs Fed by a Single Inverter

  • Kim, Chang-Bum;Yun, Chul;Yoon, Byung-Keun;Cho, Nae-Soo;Kwon, Woo-Hyen
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.1048-1057
    • /
    • 2015
  • This paper proposes a sensorless speed control algorithm for parallel-connected dual Surface-mounted Permanent Magnet Synchronous Motors (SPMSMs) fed by a single inverter. For stable parallel operation of synchronous motors with a single inverter, each motor has to be constantly kept in the synchronization state regardless of load torque. If the master motor with the larger load is controlled, the synchronous state will be maintained. Therefore, detection of the master motor is essential. Conventionally, the master motor is determined by comparing the rotor position error from the relation between the back-EMF for torque angle and the flux position; consequently, the position sensor is deemed essential for finding the rotor position. The parallel sensorless speed control method proposed in this paper uses no position sensor, instead it compares the flux-axis current from the connection between the back-EMF for torque angle and current in unbalanced load conditions. The results of simulation and experiment conducted verify the efficacy of the proposed method.

Validation of Efficiency Analysis for Independent Multi-Phase BLDC Motor Using Hysteresis PWM Current Control Method (Hysteresis PWM 전류 제어 기법을 사용한 독립 다상 BLDC 전동기의 효율 해석 유효성 검증)

  • Lee, Junewon;Kong, Yeongkyung;Park, Sunjung;Choi, Hoyong;Hong, Sungyoung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.17 no.5
    • /
    • pp.604-610
    • /
    • 2014
  • In this paper, the analysis and the experiment of independent multi-phase BLDC motor are performed. The back-emf, iron loss analysis are performed by the finite element method and compared with experimental results. The independent multi-phase BLDC motor is manufactured and to measure the efficiency of the motor, evaluation system is also manufactured including the load generator. By comparing the analytic and the experimental results, the effectiveness of the analysis model is verified when calculating the efficiency of the motor.

The Design of Filter for Hearth Liquid Level Estimation in Blast Furnace (고로 용융물 레벨 변화 추정을 위한 디지털 필터 설계)

  • Cho, Nae-Soo;Han, Mu-Ho;Kwon, Woo-Hyen;Choi, Youn-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.21 no.1
    • /
    • pp.75-81
    • /
    • 2012
  • Optimizing the tapping time of a blast furnace is important to a stable operation and life extension. To optimize the tapping time of the blast furnace, the location of Hearth Liquid Level should be recognized. There are several ways to measure the hearth liquid level in the blast furnace, such as Electromotive Force(EMF) measurement, pressure measurement by putting in nitrogen probe and manometry with strain gauge. In this paper, it will be discussed using strain gauge among the three methods. Conventional strain gauge must be revised periodically. Since, internal pressure, temperature of internal refractory material and wind pressure have effect on the strain gauge. However, static pressure value is required to compensate. To solve these problems, this paper suggests finding relationship between Hearth Liquid Level and strain gauge output, adding digital filter in strain gauge. Using the proposed method, it was possible to estimate the hearth liquid level and determine the appropriate tapping time. Usefulness of the proposed method through simulations and experimental results are confirmed.

Comparison and Analysis of Linear Oscillatory Actuator According to Mover Type (왕복운동 리니어 액추에이터의 가동자 형태에 따른 전자기적 특성해석 및 비교)

  • 장석명;최장영;정상섭;이성호;조한욱
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.53 no.4
    • /
    • pp.213-223
    • /
    • 2004
  • In the machine tool industry, direct drive linear motor technology is of increasing interest as a means to achieve high acceleration, and to increase reliability. The advantages of such a motor are that it has a good linearity and has no need of such mechanical energy conversion parts, which change rotary motion into linear motion, as screws, gears, chains etc In this paper, two structures of LOA are analyzed. One is the moving-coil type LOA and the other is moving-magnet type LOA. Two types of LOA are analyzed, with reference to the following parameters as variables: magnetic field, flux linkage, motor thrust and back emf. These variables are derived by the use of analytical method in terms of two-dimensional rectangular coordinate system. The maximum values of thrust according to such design parameters as air-gap length and magnet height for each model is also represented. The results are validated extensively by comparison with finite element method. In particular, we experiment moving-coil LOA which is already manufactured and confirm that the experimental results are shown in good agreement with analysis through the comparison of between analytical and experimental results

Permanent Magnet Overhang Effect on the Characteristics in Brushless DC Motor (브러시리스 직류전동기 특성에 대한 영구자석 오버행 효과)

  • 전연도;약미진치;이주
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.53 no.4
    • /
    • pp.229-236
    • /
    • 2004
  • In this paper, the effect of permanent magnet overhang structure on the characteristics in Brushless DC motor has analyzed quantitatively. We classified the overhang structure as symmetric and asymmetric. 3D equivalent magnetic circuit network (EMCN) method which uses the permeance as the distributive variable is used for the efficient analysis of magnetic field. The overhang effect which increases the linkage flux at the stator is verified by comparison between overhang and no overhang structure. In addition, it is known that no load back electro motive force (EMF) is also increased due to the overhang effect. In case of asymmetric overhang structure, the ratio effect of the upper to lower overhang length on the magnetic forces is analyzed. Form the analysis results, the variation of the asymmetric overhang ratio has a significant effect on the axial magnetic force except the radial and tangential magnetic forces. The validity of the analysis results is also clarified by comparison between calculated results and measured ones such as back EMF and cogging torque.

Initial Rotor Position Detection of Single-phase Permanent Magnet Synchronous Motor using Offset Voltage (옵셋 전압을 이용한 단상 영구자석 동기 전동기의 초기 회전자 위치 검출)

  • Hwang, Seon-Hwan;Seo, Sung-Woo;Jung, Tae-Uk
    • Journal of IKEEE
    • /
    • v.23 no.2
    • /
    • pp.622-627
    • /
    • 2019
  • This paper propose an initial rotor position detection method for sensorless operation of a single-phase permanent magnet synchronous motor(SP-PMSM) with asymmetric air-gap. In general, the sensorless control based on back-emf estimation is difficult to estimate the back-emf at the zero and low speed regions. For this reason, an open loop start-up technique is indispensable, and it is also necessary to detect the initial position of the rotor in order to rotate in a certain direction. In this paper, we propose a method to detect rotor polarity by adding offset voltage to high frequency voltage signal based on the magnetic characteristics of SP-PMSM. The validity and usefulness of the proposed algorithm are verified through several experimental results.

A Simple Fault Correction Method for Rotor Position Detection of Brushless DC Motor using a Latch Type Hall Effect Sensor

  • Baik In-Cheol;Joo Hyeong-Gil
    • Journal of Power Electronics
    • /
    • v.5 no.1
    • /
    • pp.62-66
    • /
    • 2005
  • A simple fault correction method for rotor position detection of a brushless DC(BLDC) motor with trapezoidal back EMF(electromotive force) using a Hall effect latch unit is presented. The reason why the Hall effect latch unit does not operate properly during the startup of a BLDC motor is thoroughly explained. To solve this problem, a simple code change method and its hardware implementation issues are proposed and discussed.

Electromagnetic Field Exposure and Male Breast Cancer Risk: A Meta-analysis of 18 Studies

  • Sun, Jing-Wen;Li, Xiao-Rong;Gao, Hong-Yu;Yin, Jie-Yun;Qin, Qin;Nie, Shao-Fa;Wei, Sheng
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.1
    • /
    • pp.523-528
    • /
    • 2013
  • Background: The possibility that electromagnetic fields (EMF) exposure may increase male breast cancer risk has been discussed for a long time. However, arguments have been presented that studies limited by poor quality could have led to statistically significant results by chance or bias. Moreover, data fo the last 10 years have not been systematically summarized. Methods and Results: To confirm any possible association, a meta-analysis was performed by a systematic search strategy. Totals of 7 case-control and 11 cohort studies was identified and pooled ORs with 95% CIs were used as the principal outcome measures. Data from these studies were extracted with a standard meta-analysis procedure and grouped in relation to study design, cut-off point, exposure assessment method, adjustment and exposure model. A statistical significant increased risk of male breast cancer with EMF exposure was defined (pooled ORs = 1.32, 95% CI = 1.14-1.52, P < 0.001), and subgroup analyses also showed similar results. Conclusions: This meta-analysis suggests that EMF exposure may be associated with the increase risk of male breast cancer despite the arguments raised.

Development of a New Personal Magnetic Field Exposure Estimation Method for Use in Epidemiological EMF Surveys among Children under 17 Years of Age

  • Yang, Kwang-Ho;Ju, Mun-No;Myung, Sung-Ho;Shin, Koo-Yong;Hwang, Gi-Hyun;Park, June-Ho
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.3
    • /
    • pp.376-383
    • /
    • 2012
  • A number of scientific researches are currently being conducted on the potential health hazards of power frequency electric and magnetic field (EMF). There exists a non-objective and psychological belief that they are harmful, although no scientific and objective proof of such exists. This possible health risk from ELF magnetic field (MF) exposure, especially for children under 17 years of age, is currently one of Korea's most highly contested social issues. Therefore, to assess the magnetic field exposure levels of those children in their general living environments, the personal MF exposure levels of 436 subjects were measured for about 6 years using government funding. Using the measured database, estimation formulas were developed to predict personal MF exposure levels. These formulas can serve as valuable tools in estimating 24-hour personal MF exposure levels without directly measuring the exposure. Three types of estimation formulas were developed by applying evolutionary computation methods such as genetic algorithm (GA) and genetic programming (GP). After tuning the database, the final three formulas with the smallest estimation error were selected, where the target estimation error was approximately 0.03 ${\mu}T$. The seven parameters of each of these three formulas are gender (G), age (A), house type (H), house size (HS), distance between the subject's residence and a power line (RD), power line voltage class (KV), and the usage conditions of electric appliances (RULE).

A Research on the Design of Slotless BLDC Motor for Concrete Vibrator (콘크리트 바이브레이터에 적용하기 위한 Slotless BLDC 모터 설계에 관한 연구)

  • Kim, Young-Hun;Jin, Chang-Sung;Kim, Jae-Hyuck
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.3
    • /
    • pp.465-469
    • /
    • 2019
  • In this paper, the design of BLDC (brushless direct current) motors based on torque and back-EMF equations was carried out to assess the application of the motor in concrete vibrators. The air gap flux density of the motor is an important parameter because the length of the motor and the size of the diameter are given. The air gap magnetic flux density was calculated through a simplified magnetic circuit, and basic design of the shape and dimensions of the motor were then determined by carrying out experiments based on torque, back-EMF, and air magnetic flux density equations. After setting the outer and inner diameters, stack lengths, and rated speed of the motor, a detailed design was performed by simulations using the finite element method by designating the diameter and thickness of the motor as the key parameters. The final design to satisfy the target torque and the lowest THD (Total Harmonic Distortion) was carried out along with a simulation.