• Title/Summary/Keyword: EMC Tests

Search Result 49, Processing Time 0.028 seconds

Electrochemical Performance of Pitch coated Nano Silicon Sheets / Graphite Composite as Anode Material (피치로 코팅된 Nano Silicon Sheets/Graphite 음극복합소재의 전기화학적 특성)

  • Lee, Tae Heon;Lee, Jong Dae
    • Korean Chemical Engineering Research
    • /
    • v.59 no.4
    • /
    • pp.487-492
    • /
    • 2021
  • In this study, the electrochemical properties of pitch coated silicon sheets/graphite anode materials were investigated. Using NaCl as a template, silicon sheets were prepared through the stöber method and the magnesiothermic reduction methode. In order to synthesize the anode composite, the silicon sheets and graphite were combined with SDBS. The pitch coated silicon sheets/graphite was synthesized using THF as a solvent for the anode material composite. The physical properties of the prepared anode composites were analysed by XRD, SEM, EDS and TGA. The electrochemical performances of the prepared anode composites were performed by the current charge/discharge, rate performance, cyclic voltammetry and EIS tests in the electrolyte LiPF6 dissolved solvents (EC:DMC:EMC=1:1:1 vol%). As the silicon composition of silicon sheets/graphite composite material increased, the discharge capacity also increased, but the cycle stability tended to decrease. The anode material of pitch coated silicon sheets/graphite composite (silicon sheets:graphite=3:7 weight ratio) showed the initial discharge capacity of 1228.8 mAh/g and the capacity retention ratio of 77% after 50 cycles. From these results, it was found that the cycle stability of pitch coated silicon sheets/graphite was improved.

Electrochemical Characteristics of High Capacity Anode Composites Using Silicon and CNT for Lithium Ion Batteries (실리콘과 CNT를 사용한 리튬 이온 전지용 고용량 음극복합소재의 전기화학적 특성)

  • Lee, Tae Heon;Lee, Jong Dae
    • Korean Chemical Engineering Research
    • /
    • v.60 no.3
    • /
    • pp.446-451
    • /
    • 2022
  • In this study, to improve capacity and cycle stability, the pitch coated nano silicon sheets/CNT composites were prepared through electrostatic bonding of nano silicon sheets and CNT. Silica sheets were synthesized by hydrolyzing TEOS on the crystal planes of NaCl, and then nano silicon sheets were prepared by using magnesiothermic reduction method. To fabricate the nano silicon sheets/CNT composites, the negatively charged CNT after the acid treatment was used to assemble the positively charged nano silicon sheets modified with APTES. THF as a solvent was used in the coating process of PFO pitch. The physical properties of the prepared anode composites were analysed by FE-SEM, XRD and EDS. The electrochemical performances of the synthesized anode composites were performed by current charge/discharge, rate performances, differential capacity and EIS tests in the electrolyte LiPF6 dissolve solvent (EC:DMC:EMC = 1:1:1 vol%). It was found that the anode material with high capacity and stability could be synthesized when high composition of silicon and conductivity of CNT were used. The pitch coated nano silicon sheets/CNT anode composites showed initial discharge capacity of 2344.9 mAh/g and the capacity retention ratio of 81% after 50 cycles. The electrochemical property of pitch coated anode material was more improved than that of the nano silicon sheets/CNT composites.

The Ground Checkout Test of OSMI(Ocean Scanning Multispectral Imager) on KOMPSAT-1

  • Yong, Sang-Soon;Shim, Hyung-Sik;Heo, Haeng-Pal;Cho, Young-Min;Oh, Kyoung-Hwan;Woo, Sun-Hee;Paik, Hong-Yul
    • Proceedings of the KSRS Conference
    • /
    • 1999.11a
    • /
    • pp.375-380
    • /
    • 1999
  • Ocean Scanning Multispectral Imager (OSMI) is a payload on the KOMPSAT satellite to perform worldwide ocean color monitoring for the study of biological oceanography. The instrument images the ocean surface using a wisk-broom motion with a swath width of 800 km and a ground sample distance (GSD) of<1km over the entire field of view (FOV). The instrument is designed to have an on-orbit operation duty cycle of 20% over the mission lifetime of 3 years with the functions of programmable gain/offset and on-board image data compression/storage. The instrument also performs sun and dark calibration for on-board instrument calibration. The OSMI instrument is a multi-spectral imager covering the spectral range from 400nm to 900nm using CCD Focal Plane Array (FPA). The ocean colors are monitored using 6 spectral channels that can be selected via ground commands. KOMPSAT satellite with OSMI was integrated and the satellite level environment tests and instrument aliveness/functional test as well, such as launch environment, on-orbit environment (Thermal/vacuum) and EMl/EMC test were performed at KARI. Test results met the requirements and the OSMI data were collected and analyzed during each test phase. The instrument is launched on the KOMPSAT satellite in the late 1999 and the image is scheduled to start collecting ocean color data in the early 2000 upon completion of on-orbit instrument checkout.

  • PDF

Simultaneous Removal of Carbon and Ammonia Nitrogen from Recirculation Water in High Density Seawater Aquaculture Farm (고밀도 해산어 양식장 순환수로부터 유기물 및 암모니아질소 동시 제거)

  • 정병곤;김문태;이헌모
    • Journal of environmental and Sanitary engineering
    • /
    • v.18 no.1
    • /
    • pp.15-22
    • /
    • 2003
  • Treatability tests were conducted using EMC process to study the feasibility of applying this process as recycling-water treatment system in high density seawater aquaculture farm. To study the effect of organic and ammonia nitrogen loading on system performance, hydraulic retention time of reactor was reduced gradually from 12hr to 10min. The conclusions are can be summarized as follows. When the system HRT was reduced from 12hr to 10 min gradually, there was little noticeable change(reduction) in ammonia nitrogen removal efficiencies until 2hr of HRT, however, removal efficiencies were decreased dramatically when the system was operated under the HRT of less than 2hr. In case of organics(COD), there was no dramatic deterioration in removal efficiencies depending on HRT reduction. More than 90% of removal efficiencies were maintained successfully when the system was operated at the HRT of 10 min. In case of system performance depending on media packing ratio in reactor, there was little difference in each reactor performance depending on media packing ratio in reactor when the reactors were operated under the HRT of longer than 1hr, however, differences in reactor performances were considerably evident when the reactors were operated under the HRT of shorter than 1hr. That is, the more reactor was packed, the better reactor performed. When comparing reactor performance among 25%, 50%, 75% packed reactor, it can be judged that media packing ratio more than 50% plays no significant role in increasing reactor performance. For this reason, packing the media less than 50% is more reasonable way in view of economic. Such a tendency well agreed with the variation of ammonia-nitrogen removal efficiencies according to the media packing ratio in reactors at each HRT. Difference in effluent ammonia-nitrogen concentration between 50% media packing reactor and 75% media packing reactor was negligible. When comparing with the results of 25% packing reactor, difference was not so great.

The Ground Checkout Test of OSMI on KOMPSAT-1

  • Yong, Sang-Soon;Shim, Hyung-Sik;Heo, Haeng-Pal;Cho, Young-Min;Oh, Kyoung-Hwan;Woo, Sun-Hee;Paik, Hong-Yul
    • Korean Journal of Remote Sensing
    • /
    • v.15 no.4
    • /
    • pp.297-305
    • /
    • 1999
  • Ocean Scanning Multispectral Imager (OSMI) is a payload on the KOMPSAT satellite to perform global ocean color monitoring for the study of biological oceanography. The instrument images the ocean surface using a wisk-broom motion with a swath width of 800km and a ground sample distance (GSD) of < 1km over the entire field of view (FOV). The instrument is designed to have an on-orbit operation duty cycle of 20% over the mission lifetime of 3 years with the functions of programmable gain/offset and on-board image data compression/storage. The instrument also performs sun and dark calibration for on-board instrument calibration. The OSMI instrument is a multi-spectral imager covering the spectral range from 400nm to 900nm using CCD Focal Plane Array (FPA). The ocean colors are monitored using 6 spectral channels that can be selected via ground commands. KOMPSAT satellite with OSMI was integrated and the satellite level environment tests including instrument aliveness/functional test, such as launch environment, on-orbit environment (Thermal/Vacuum) and EMI/EMC test were performed at KARl. Test results met the requirements and the OSMI data were collected and analyzed during each test phase. The instrument is launched on the KOMPSAT satellite on December 21,1999 and is scheduled to start collecting ocean color data in the early 2000 upon completion of on-orbit instrument checkout.

Proposing a low-frequency radiated magnetic field susceptibility (RS101) test exemption criterion for NPPs

  • Min, Moon-Gi;Lee, Jae-Ki;Lee, Kwang-Hyun;Lee, Dongil
    • Nuclear Engineering and Technology
    • /
    • v.51 no.4
    • /
    • pp.1032-1036
    • /
    • 2019
  • When the equipment which is related to safety or important to power production is installed in nuclear power plant units (NPPs), verification of equipment Electromagnetic Susceptibility (EMS) must be performed. The low-frequency radiated magnetic field susceptibility (RS101) test is one of the EMS tests specified in U.S NRC (Nuclear Regulatory Commission) Regulatory Guide (RG) 1.180 revision 1. The RS101 test verifies the ability of equipment installed in close proximity to sources of large radiated magnetic fields to withstand them. However, RG 1.180 revision 1 allows for an exemption of the low-frequency radiated magnetic susceptibility (RS101) test if the safety-related equipment will not be installed in areas with strong sources of magnetic fields. There is no specific exemption criterion in RG 1.180 revision 1. EPRI TR-102323 revision 4 specifically provides a guide that the low-frequency radiated magnetic field susceptibility (RS101) test can be conservatively exempted for equipment installed at least 1 m away from the sources of large magnetic fields (>300 A/m). But there is no exemption criterion for equipment installed within 1 m of the sources of smaller magnetic fields (<300 A/m). Since some types of equipment radiating magnetic flux are often installed near safety related equipment in an electrical equipment room (EER) and main control room (MCR), the RS101 test exemption criterion needs to be reasonably defined for the cases of installation within 1 m. There is also insufficient data regarding the strength of magnetic fields that can be used in NPPs. In order to ensure confidence in the RS101 test exemption criterion, we measured the strength of low-frequency radiated magnetic fields by distance. This study is expected to provide an insight into the RS101 test exemption criterion that meets the RG 1.180 revision 1. It also provides a margin analysis that can be used to mitigate the influence of low-frequency radiated magnetic field sources in NPPs.

Safety Verification of Mounting Flight Video and Data Recorder in the Military Aircraft (군용항공기 내 비행 영상 및 데이터 녹화기 장착에 관한 안전성 검증)

  • Jung-Hyuk Kwon;Gyeong-Nam Kim;Won-Hwa Hwang;Wang-Sang Lee
    • Journal of Aerospace System Engineering
    • /
    • v.17 no.5
    • /
    • pp.42-57
    • /
    • 2023
  • In this paper, to increase the research capability of flight missions and maintenance in operating military aircraft, we studied the requirements for additional mounting of flight video and data recorders and safety verification methods. The verification process of the recorder equipment itself, structural safety in the aircraft system, power and electrical safety, electromagnetic compatibility, and impact of airworthiness are described in accordance with military standards and operating environment requirements. In addition, through ground/flight tests, the results of functional operation suitable for the influence and demand of interference between the flight video and data recorder and other systems are also presented.

Development of Performance Analysis 80 kW High-efficiency Permanent Magnet Generator for Radar System Power Supply (레이더 체계 전원공급용 80 kW급 고효율 영구자석형 발전기 개발 및 성능분석)

  • Ryu, Ji-Ho;Cho, Chong-Hyeon;Chong, Min-Kil;Park, Sung-Jin;Kang, Kwang-Hee
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.22 no.1
    • /
    • pp.60-71
    • /
    • 2019
  • Electrical power supply is needed to operate the radar system in the field. In addition, it should not cause performance deterioration under the environmental factors due to characteristics of military equipment, and should not cause malfunction due to electromagnetic waves generated in radar, and then should not cause malfunction in radar equipment. Therefore, By applying a permanent magnet to the rotor of the generator, light weighting and high efficiency of generator were achieved. As a result, electrical performance test of the generator, the rated output power was 80.8 kW, the maximum output power was 88.1 kW, and the output power efficiency was 98.1 % under the full load condition. When the load capacity of the generator was changed from no load to full load, the maximum voltage variation was 3.6 % and the frequency variation was 0.3 %. As a result of the transient response test for measuring the output power of the generator according to the load characteristics change, the maximum voltage variation of 7.9 %, frequency variation of 0.5 % were confirmed, and the transient response time was 2.1 seconds. Environmental tests were conducted in accordance with MIL-STD-810G and MIL-STD-461F to evaluate the operability of the generator groups. Normal operation of radar system generator group was confirmed under high temperature and low temperature environment conditions. Electromagnetic tests were conducted to check if electromagnetic wave generated from both radar system and generator group in operation caused any performance deterioration to each other. As a result, it was confirmed that the performance deterioration due to electromagnetic wave inflow, radiation, and conduction did not occur. It is expected that it should be possible to provide high efficiency power supply and stable power supply by applying to various military system as well as radar system.

Development Hybrid Filter System for Applicable on Various Rainfall (다양한 강우사상에 대응 가능한 침투여과형 기술개발)

  • Choi, Jiyeon;Kim, Soonseok;Lee, Soyoung;Nam, Guisook;Cho, Hyejin;Kim, Lee-Hyung
    • Journal of Wetlands Research
    • /
    • v.15 no.4
    • /
    • pp.535-541
    • /
    • 2013
  • The urbanization affects significantly on a natural water circulation system by increasing the imperviousness rate. It is also negatively affecting on urban temperature, environmental pollution, water quality, and aqua-ecosystems. The Korea MOE (Ministry of Environment) adapted a new environmental policy in order to reduce the impact of urbanization, which is the Green Stormwater Infrastructure (GSI) program. The GSI can be achieved by protecting conservable green spaces, enlarging more green spaces, and constructing more permeable pavements. The GSI is including many different techniques such as bioretention, rain garden, infiltration trench and so on. Also It is the infrastructures using natural mechanisms of soils, microorganisms, plants and animals on a water circulation system and pollutant reduction. In this research, a multi functional GSI technology with infiltration-filtration mechanisms has been developed and performed lab-scale tests to evaluate the performances about infiltration rate restoration and pollutant reduction. The most of pollutants including metals, organics and particulates were reduced about 50~90% due to water infiltration and storage functions. The clogging was found when the TSS loading rate was reached on $8.3{\sim}9.0kg/m^2$, which value is higher than the values in literatures. It means the new technology can show high performances with low maintenances.