• Title/Summary/Keyword: EMB

Search Result 88, Processing Time 0.023 seconds

Implication of embB Gene Mutation in Ethambutol-Susceptible Clinical Isolates of Mycobacterium tuberculosis (임상에서 분리된 에탐부톨 감수성균에서의 embB 유전자 돌연변이에 대한 고찰)

  • Park, Young Kil;Shin, Sonya;Kim, Sang Jae;Koh, Won-Jung;Kwon, O Jung;Kim, Bum Jun;Kook, Yoon Ho;Cho, Sang Nae;Lew, Woo Jin;Bai, Gill Han
    • Tuberculosis and Respiratory Diseases
    • /
    • v.59 no.3
    • /
    • pp.266-271
    • /
    • 2005
  • Background : Ethambutol(EMB) is one of the first-line drugs included in short-course anti-tuberculosis therapy. The point mutations in embB gene have been speculated to be associated EMB resistance. However, detection of embB mutations at these positions have been observed in both EMB-susceptible isolates; thus, it remains controversial whether these mutations are associated with EMB resistance Methods : The 36 M. tuberculosis isolates were selected from clinical isolates which tested susceptible to EMB and resistant to at least one drug. DNA extracted from the isolates was analyzed by amplifying embB gene. The PCR products were purified and directly sequenced. We reviewed the history of past drug susceptibility test results. Results : Out of 36 EMB-susceptible strains, 3 strains (8.3%) had a mutation in codon 306 or 406 of the embB gene. These three strains had at least isoniazid resistance. They grew at 1.0 mcg/ml of EMB in Lowenstein-Jensen media. The patients of the strains were continuously smear-positive for over 3 years despite taking TB therapy. One strain had been EMB-resistant in past drug susceptibility tests. Conclusion : EMB-susceptible strains containing embB mutation may be caused by decreased viability in vitro test not by itself.

A Study on Quality Improvement of Electrical Master Box for KUH (한국형 기동헬기 전원분배 제어장치의 품질 향상에 관한 연구)

  • Kim, Young Mok;Jun, Byung Kyu;Jeong, Sang Gyu;Lee, Joo Hyung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.1
    • /
    • pp.71-78
    • /
    • 2017
  • The electrical power system of Korean Utility Helicopter(KUH) is designed as a dual control system to enhance the system safety of aircraft and each system is installed separately at left and right of the aircraft. The system is composed of 2 AC generators, 1 APU generator, 2 Transformer Rectifier Units(TRU), AC/DC Electrical Master Box(AC/DC EMB). The AC/DC EMB, consists of 2 AC EMB and 2 DC EMB, is essential equipment which supply and distribute electric power to the aviation electronics and electrical equipment of KUH. There were defects caused by internal short circuit in AC EMB during the first production phase of the KUH. This paper describes the analysis of the defects, troubleshooting process, root cause, and the solution by design change.

Torque Predictive Control for Dynamic Performance Improvement of Clamping Force in EMB for Railroad Cars (철도 차량용 EMB의 클램핑 포스 과도응답 향상을 위한 토크 예측 제어)

  • Jang, Yoon;Bak, Yeongsu;Lee, Kyo-Beum
    • Journal of IKEEE
    • /
    • v.21 no.3
    • /
    • pp.174-184
    • /
    • 2017
  • This paper proposes a torque predictive control for dynamic performance improvement of clamping force in electro-mechanical brake (EMB) for railroad cars. In general, pneumatic braking system (PBS) is used for railroad cars. It is sensitive depending on environmental changes and it has increasing idle running time because of slow dynamic response. Additionally, the PBS has low braking efficiency in case braking torque more than standard value is applied to the brake system such as emergency braking. In order to overcome these disadvantages of the PBS, the EMB is used for the railroad cars. The EMB for railroad cars has advantages that increasing the fuel efficiency and design flexibility because it is able to decrease vehicle weight of railroad cars and secure space for design. In this paper, control method for dynamic performance improvement of clamping force in EMB for railroad car is proposed. The effectiveness of the proposed control method is verified by the simulation results.

Structural dynamics insights into the M306L, M306V, and D1024N mutations in Mycobacterium tuberculosis inducing resistance to ethambutol

  • Yustinus Maladan;Dodi Safari;Arli Aditya Parikesit
    • Genomics & Informatics
    • /
    • v.21 no.3
    • /
    • pp.32.1-32.11
    • /
    • 2023
  • Resistance to anti-tuberculosis drugs, especially ethambutol (EMB), has been widely reported worldwide. EMB resistance is caused by mutations in the embB gene, which encodes the arabinosyl transferase enzyme. This study aimed to detect mutations in the embB gene of Mycobacterium tuberculosis from Papua and to evaluate their impact on the effectiveness of EMB. We analyzed 20 samples of M. tuberculosis culture that had undergone whole-genome sequencing, of which 19 samples were of sufficient quality for further bioinformatics analysis. Mutation analysis was performed using TBProfiler, which identified M306L, M306V, D1024N, and E378A mutations. In sample TB035, the M306L mutation was present along with E378A. The binding affinity of EMB to arabinosyl transferase was calculated using AutoDock Vina. The molecular docking results revealed that all mutants demonstrated an increased binding affinity to EMB compared to the native protein (-0.948 kcal/mol). The presence of the M306L mutation, when coexisting with E378A, resulted in a slight increase in binding affinity compared to the M306L mutation alone. The molecular dynamics simulation results indicated that the M306L, M306L + E378A, M306V, and E378A mutants decreased protein stability. Conversely, the D1024N mutant exhibited stability comparable to the native protein. In conclusion, this study suggests that the M306L, M306L + E378A, M306V, and E378A mutations may contribute to EMB resistance, while the D1024N mutation may be consistent with continued susceptibility to EMB.

Modeling of EMB (Electro Mechanical Brake) to Emulate Gearbox Fault and Control (기어의 고장을 구현하기 위한 EMB(Electro Mechanical Brake) 모델링 및 제어)

  • Choe, Byung-Do;Hwang, Woo-Hyun;Huh, Kun-Soo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.6
    • /
    • pp.33-38
    • /
    • 2012
  • EMB is considered as the next generation braking mechanism because it has simple structure and is environment friendly. However, as other brake mechanisms, EMB should be operated reliably for any operating conditions. EMB should be designed with fail-safe and fault-tolerant control concepts which require robust fault detection algorithms for various possible faults. In the design of fault detection algorithms, it is very difficult to construct faulty conditions in real EMB and thus, simulations are often used to emulate the faulty conditions. In this paper, a simulation tool is developed using the commercial software to emulate gear faults in the EMB mechanism. A backlash compensation algorithm is introduced based on contact point detection because screw backlash causes a delay in clamping force response time.

Detection of embB Gene Mutation of Mycobacterium tuberculosis by Reverse Hybridization Assay (역교잡 방법을 이용한 결핵균 embB 유전자 돌연변이 검출)

  • Park, Young Kil;Yu, Hee Kyung;Park, Chan Hong;Ryu, Sung Weon;Lee, Seung Heon;Shim, Myung Sup;Lew, Woo Jin;Koh, Won-Jung;Kwon, O Jung;Cho, Sang Nae;Bai, Gill Han
    • Tuberculosis and Respiratory Diseases
    • /
    • v.58 no.2
    • /
    • pp.129-134
    • /
    • 2005
  • Background : Ethambutol (EMB) is one of important first-line drug in the treatment of tuberculosis. Molecular techniques to detect embB gene mutations have been considered as an method to define the EMB resistance. We investigated the mutation rate within embB gene among EMB resistant strains using reverse hybridization techniques. Methods : We made 11 probes that had wild or mutated sequences containing codons 306, 406, or 497 within embB gene respectively. These probes were reverse-hybridized with PCR products amplified from embB gene which were isolated from 149 ethambutol resistant strains and 50 pan-susceptible strains. Results : Out of 149 ethambutol resistant strains, one hundred (67.1%) had mutation at least one base at codon 306, 406, or 497 in embB gene. Mutation at codon 306, 406, 497 were demonstrated in 75 (50.3%), 16 (10.7%), and 13 strains (8.7%) respectively. There were four strains that showed multi-mutation at codon 306 and codon 406 simultaneously. A high proportion (8.1%) had single mutation at codon 406. There was no mutation observed in embB gene among 50 pan-susceptible strains. Conclusion : Reverse hybridization will be useful technique for detection of gene mutation correlated to ethambutol resistance.

A Design Method of Three-phase IPMSM and Clamping Force Control of EMB for High-speed Train (고속철도차량의 EMB 적용을 위한 3상 IPMSM의 설계 및 제동압부력 제어)

  • Baek, Seung-Koo;Oh, Hyuck-Keun;Kwak, Min-ho;Kim, Seog-Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.4
    • /
    • pp.578-585
    • /
    • 2018
  • This paper proposes a design method for a 3-phase interior permanent magnet synchronous motor (IPMSM) and clamping force control method for an electro-mechanical brake (EMB) using co-simulation for a high-speed train (HST). A traditional pneumatic brake system needs much space for the compressor, brake reservoir, and air pipe. However, an EMB system uses up to 50% less space due to the use of a motor and electric wires for controlling the brake caliper. In addition, it can reduce the latency time for brake control because of the fast response and precise control. A train that has many brakes is advantageous for safety because of the control by sharing the braking force. In this paper, a driving method for a cam-shaft-type EMB is modeled. It is different from the ball-screw-type brakes that are widely used in automobiles. In addition, a co-simulation method is proposed using JMAG and Matlab/Simulink. The IPMSM was designed and analyzed with the JMAG tool, and the control system was simulated using Matlab/Simulink. The effectiveness of the co-simulation results of the mechanical clamping force and braking force was verified by comparison with the clamping force specifications of a HEMU-430X HST.

Adsorption of Zinc Ion in Synthetic Wastewater by Ethylenediaminetetraacetic Acid-Modified Bentonite (에틸렌다이아민테트라아세트산으로 개질된 벤토나이트를 이용한 합성폐수 내 아연 이온 흡착)

  • Jeong, Myung-Hwa;Kwon, Dong-Hyun;Lim, Yeon-Ju;Ahn, Johng-Hwa
    • Journal of Korean Society on Water Environment
    • /
    • v.35 no.2
    • /
    • pp.123-130
    • /
    • 2019
  • Ethylenediaminetetraacetic acid-modified bentonite (EMB) was used for adsorption of zinc ion (Zn) from aqueous solution, compared with unmodified bentonite (UB). Parameters such as dose (0.750 ~ 3.125 g/L), mixing intensity (10 ~ 150 rpm), contact time (0.17 ~ 30 min), pH (2 ~ 7), and temperature (298 ~ 338 K), were studied. Zn removal efficiency for EMB was 20 ~ 30 % higher, than that for UB, in all experiments. Thermodynamic studies demonstrated that adsorption process was spontaneous with Gibb's free energy (${\Delta}G$) values, ranging between -5.211 and -7.175 kJ/mol for EMB, and -0.984 and -2.059 kJ/mol for UB, and endothermic with enthalpy (${\Delta}H$) value of 9.418 kJ/mol for EMB and 7.022 kJ/mol for UB. Adsorption kinetics was found to follow the pseudo-second order kinetics model, and its rate constant was 3.41 for EMB and $2.00g/mg{\cdot}min$ for UB. Adsorption equilibrium data for EMB were best represented by the Langmuir adsorption isotherm, and calculated maximum adsorption capacity was 2.768 mg/g. It was found that the best conditions for Zn removal of EMB within the range of operation used, were 3.125 g/L dose, 90 rpm intensity, 10 min contact time, pH 4, and 338 K. Therefore, EMB has good potential for adsorption of Zn.

Current and Force Sensor Fault Detection Algorithm for Clamping Force Control of Electro-Mechanical Brake (Electro-Mechanical Brake의 클램핑력 제어를 위한 전류 및 힘 센서 고장 검출 알고리즘 개발)

  • Han, Kwang-Jin;Yang, I-Jin;Huh, Kun-Soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.11
    • /
    • pp.1145-1153
    • /
    • 2011
  • EMB (Electro-Mechanical Brake) systems can provide improved braking and stability functions such as ABS, EBD, TCS, ESC, BA, ACC, etc. For the implementation of the EMB systems, reliable and robust fault detection algorithm is required. In this study, a model-based fault detection algorithm is designed based on the analytical redundancy method in order to monitor current and force sensor faults in EMB systems. A state-space model for the EMB is derived including faulty signals. The fault diagnosis algorithm is constructed using the analytical redundancy method. Observer is designed for the EMB and the fault detectability condition is examined based on the residual analysis. The performance of the proposed model-based fault detection algorithm is verified in simulations. The effectiveness of the proposed algorithm is demonstrated in various faulty cases.

Study of EMB System Using Wedge Structure (웨지 구조를 이용한 전기기계브레이크 시스템 연구)

  • Shin, Dong-Hwan;Kwon, Oh-Seok;Bae, Jun-Hyung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.3
    • /
    • pp.8-18
    • /
    • 2010
  • According to the needs of change to hybrid, fuel cell and electric vehicle, and to the increasing demand for safety and eco-friendliness, the necessity of Electro-Mechanical Brake(EMB) is being increased. But, one of the most important problems for realizing EMB to the practical use is that the required motor power for braking is too high. So the high braking efficient EMB is required. In recent years, the Electronic Wedge Brake(EWB) is noticeable for the high braking efficiency. In this research, we examine the improvable matter of the recent published EWB, and we propose the improved mechanism and the cost effective control method using this mechanism. And we test these feasibility by experiment and discuss these meaning and effect.