• Title/Summary/Keyword: EM, Expectation Maximization

Search Result 139, Processing Time 0.039 seconds

Fast Image Reconstruction for Positron Emission Tomography Using Time-Of-Flight Information (양전자 방출 단층 촬영기의 비행 시간 정보를 이용한 고속 영상재구성)

  • Lee, Nam-Yong
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.6
    • /
    • pp.865-872
    • /
    • 2017
  • Recent advance in electronics and scintillators makes it possible to utilize the time-of-flight (TOF) information in improving image reconstruction of positron emission tomography(PET). In this paper, we propose a TOF-based fast image reconstruction method for PET. The proposed method uses the deconvolution of TOF data for each angle view and the rotational averaging of deconvolved images. Simulation results show an improved performance of the proposed method, as compared with filtered backprojection (FBP) method, TOF-FBP, and TOF version of expectation-maximization(EM) methods. Simulation results also show a great potentiality of the proposed method in limited angle tomography applications.

A New Adaptive Image Separation Scheme using ICA and Innovation Process with EM

  • Kim, Sung-Soo;Ryu, Jeong-Woong;Oh, Bum-Jin
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.96.2-96
    • /
    • 2002
  • In this paper, a new method for the mixed image separation is presented using the independent component analysis, the innovation process, and the expectation-maximization. In general, the independent component analysis (ICA) is one of the widely used statistical signal processing scheme that represents the information from observations as a set of random variables in the form of linear combinations of another statistically independent component variables. In various useful applications, ICA provides a more meaningful representation of the data than the principal component analysis through the transformation of the data to be quasi-orthogonal to each other, which can be utilized in linear p...

  • PDF

Semiparametric Regression Splines in Matched Case-Control Studies

  • Kim, In-Young;Carroll, Raymond J.;Cohen, Noah
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2003.05a
    • /
    • pp.167-170
    • /
    • 2003
  • We develop semiparametric methods for matched case-control studies using regression splines. Three methods are developed: an approximate crossvalidation scheme to estimate the smoothing parameter inherent in regression splines, as well as Monte Carlo Expectation Maximization (MCEM) and Bayesian methods to fit the regression spline model. We compare the approximate cross-validation approach, MCEM and Bayesian approaches using simulation, showing that they appear approximately equally efficient, with the approximate cross-validation method being computationally the most convenient. An example from equine epidemiology that motivated the work is used to demonstrate our approaches.

  • PDF

CT HEAD IMAGES SEGMENTATION USING UNSUPERVISED TECHNIQUES

  • Lee, Tong Hau;Fauzi, Mohammad Faizal Ahmad;Komiya, Ryoichi;Hu, Ng
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.217-222
    • /
    • 2009
  • In this paper, a new approach is proposed for the segmentation of Computed Tomography (CT) head images. The approach consists of two-stage segmentation with each stage contains two different segmentation techniques. The ultimate aim is to segment the CT head images into three classes which are abnormalities, cerebrospinal fluid (CSF) and brain matter. For the first stage segmentation, k-means and fuzzy c-means (FCM) segmentation are implemented in order to acquire the abnormalities. Whereas for the second stage segmentation, modified FCM with population-diameter independent (PDI) and expectation-maximization (EM) segmentation are adopted to obtain the CSF and brain matter. The experimental results have demonstrated that the proposed system is feasible and achieve satisfactory results.

  • PDF

A Pilot Symbol Based Coherent QAM Decoder for a Wireless Channel (파일럿 패턴을 이용한 무선 QAM 송수신 기술 연구)

  • Kim, Han-Il;Han, Jae-Choong
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.50 no.8
    • /
    • pp.400-405
    • /
    • 2001
  • Quadrature Amplitude Modulation(QAM) is well known a bandwidth efficient modulation scheme. However, its use for mobile communications has been limited due to noise and signal distortion. Recently, the QAM scheme is emerging as a new modulation scheme for a band-limited wireless system. In this paper, we propose an iterative decoding algorithm assuming QAM signal for a narrow-band mobile channel. The Algorithm is based on the EM(Expectation Maximization) Algorithm, and the performances of the proposed decoder are assessed using computer simulation. The simulation results show that the proposed decoder perform better compared to that of other schemes.

  • PDF

Noisy Speech Recognition Based on Noise-Adapted HMMs Using Speech Feature Compensation

  • Chung, Yong-Joo
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.15 no.2
    • /
    • pp.37-41
    • /
    • 2014
  • The vector Taylor series (VTS) based method usually employs clean speech Hidden Markov Models (HMMs) when compensating speech feature vectors or adapting the parameters of trained HMMs. It is well-known that noisy speech HMMs trained by the Multi-condition TRaining (MTR) and the Multi-Model-based Speech Recognition framework (MMSR) method perform better than the clean speech HMM in noisy speech recognition. In this paper, we propose a method to use the noise-adapted HMMs in the VTS-based speech feature compensation method. We derived a novel mathematical relation between the train and the test noisy speech feature vector in the log-spectrum domain and the VTS is used to estimate the statistics of the test noisy speech. An iterative EM algorithm is used to estimate train noisy speech from the test noisy speech along with noise parameters. The proposed method was applied to the noise-adapted HMMs trained by the MTR and MMSR and could reduce the relative word error rate significantly in the noisy speech recognition experiments on the Aurora 2 database.

Estimation of Mixture Numbers of GMM for Speaker Identification (화자 식별을 위한 GMM의 혼합 성분의 개수 추정)

  • Lee, Youn-Jeong;Lee, Ki-Yong
    • Speech Sciences
    • /
    • v.11 no.2
    • /
    • pp.237-245
    • /
    • 2004
  • In general, Gaussian mixture model(GMM) is used to estimate the speaker model for speaker identification. The parameter estimates of the GMM are obtained by using the expectation-maximization (EM) algorithm for the maximum likelihood(ML) estimation. However, if the number of mixtures isn't defined well in the GMM, those parameters are obtained inappropriately. The problem to find the number of components is significant to estimate the optimal parameter in mixture model. In this paper, to estimate the optimal number of mixtures, we propose the method that starts from the sufficient mixtures, after, the number is reduced by investigating the mutual information between mixtures for GMM. In result, we can estimate the optimal number of mixtures. The effectiveness of the proposed method is shown by the experiment using artificial data. Also, we performed the speaker identification applying the proposed method comparing with other approaches.

  • PDF

Robust HDR Image Reconstruction via Outlier Handling (아웃라이어 처리를 통한 강인한 HDR 영상 복원 방법)

  • Cho, Ho-Jin;Lee, Seung-Yong
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2012.06c
    • /
    • pp.317-319
    • /
    • 2012
  • 본 논문에서는 아웃라이어 처리를 통한 강인한 HDR 영상 복원 방법을 제시한다. 기존의 방법들은 LDR 영상들에서 흔히 발생하는 긴 노출시간으로 인한 블러 현상이나 저노출/과노출로 인한 포화 픽셀(아웃라이어)을 고려하지 않았다. 본 논문이 제시하는 방법은 MAP(Maximum a priori)을 이용하여 블러 및 아웃라이어를 반영하여 HDR 영상 복원 문제를 정확히 모델링하고, 블러 추정 및 EM(Expectation-Maximization) 알고리즘 기반의 아웃라이어 추정을 통해 품질 저하가 없는 선명한 HDR 영상을 복원한다. 실험 결과를 통해 본 논문이 제시하는 방법이 블러 및 아웃라이어를 포함하는 LDR 영상들로부터 우수한 품질의 HDR 영상을 효과적으로 복원할 수 있음을 보이며, 최근에 개발된 방법들과 비교해서도 더 우수한 품질을 갖는 것을 볼 수 있다.

Estimating the Mixture of Proportional Hazards Model with the Constant Baseline Hazards Function

  • Kim Jong-woon;Eo Seong-phil
    • Proceedings of the Korean Reliability Society Conference
    • /
    • 2005.06a
    • /
    • pp.265-269
    • /
    • 2005
  • Cox's proportional hazards model (PHM) has been widely applied in the analysis of lifetime data, and it can be characterized by the baseline hazard function and covariates influencing systems' lifetime, where the covariates describe operating environments (e.g. temperature, pressure, humidity). In this article, we consider the constant baseline hazard function and a discrete random variable of a covariate. The estimation procedure is developed in a parametric framework when there are not only complete data but also incomplete one. The Expectation-Maximization (EM) algorithm is employed to handle the incomplete data problem. Simulation results are presented to illustrate the accuracy and some properties of the estimation results.

  • PDF

Exploring COVID-19 in mainland China during the lockdown of Wuhan via functional data analysis

  • Li, Xing;Zhang, Panpan;Feng, Qunqiang
    • Communications for Statistical Applications and Methods
    • /
    • v.29 no.1
    • /
    • pp.103-125
    • /
    • 2022
  • In this paper, we analyze the time series data of the case and death counts of COVID-19 that broke out in China in December, 2019. The study period is during the lockdown of Wuhan. We exploit functional data analysis methods to analyze the collected time series data. The analysis is divided into three parts. First, the functional principal component analysis is conducted to investigate the modes of variation. Second, we carry out the functional canonical correlation analysis to explore the relationship between confirmed and death cases. Finally, we utilize a clustering method based on the Expectation-Maximization (EM) algorithm to run the cluster analysis on the counts of confirmed cases, where the number of clusters is determined via a cross-validation approach. Besides, we compare the clustering results with some migration data available to the public.