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Abstract

Cox’s proportional hazards model (PHM) has been widely applied in the analysis of lifetime data, and it can be
characterized by the baseline hazard function and covariates influencing systems’ lifetime, where the covariates
describe operating environments (e.g. temperature, pressure, humidity). In this article, we consider the constant
baseline hazard function and a discrete random variable of a covariate. The estimation procedure is developed in
a parametric framework when there are not only complete data but also incomplete one. The Expectation-
Maximization (EM) algorithm is employed to handle the incomplete data problem. Simulation results are
presented to illustrate the accuracy and some properties of the estimation results.

1. Introduction

Notation

s :a covariate

sy :the kth element of a covariate
g  :the number of elements of s

n  :the number of uncategorized field units

¢; :the number of categorized field observations
whose covariates are s;

Com - f:l .

d; :the number of experiment observations whose

covariates are ;.

m, c,+d, (i=1,...,¢g)

sum : ,'g:1 mi

x; :the failure time of the jth uncategorized field
observation.

y; :the failure time of the jth observation among
the categorized field observations whose
covariates are s;.

m

z; :the failure time of the jth experiment
observation among the experiment
observations whose covariates are s;.

Yy 1<j<¢

w; :w”'={z.. c<jsm

iy? i i

8 :avector of lifetime distribution parameters.
7 :a vector of a regression parameter

$ }nﬁ)
v (p.n.6)

In this article, a mixed proportional hazards
model (mixed PHM) is derived and a procedure is
proposed to estimate all parameters in the mixed
PHM with the constant baseline hazards function.
which is a mixture model of the proportional hazards
model (PHM). The PHM has been considered as a us

eful tool to deal with the environmental factors in
the analysis of lifetime data. Solomon (1984)
indicated that significant effects for covariates would
be obtained even in the cases where the model was
not wholly appropriate, and showed that the PHM is
relatively robust to departures from the proportional
hazards assumption. The application of PHM to
reliability data has been considered by a number of
authors, for example, Ansell and Phillips (1997) and
Jozwiak (1997). For a list of more recent papers, see
the review paper by Kumar and Klefsjo (1994).

The failure nature of an item can be modeled by
the hazard rate. The assumption imposed for the
PHM, in most cases, is that the hazard rate of a
system is the product of a baseline (time-dependent)
hazard rate 4, (t) and a positive (time-independent)
functional term cu(s,n), incorporating the effects of
a number of covariates such as temperature, pressure,
and changes in design. That is,

Algs)=ols, 1) () (1)

where s is a row vector consisting of the
covariates and 7 is a column vector consisting of
the regression parameters. In general, there are two
ways to model the baseline hazard rate A, (t): by the
parametric model and by the non-parametric model.

In the parametric model, we assume a suitable
theoretical function for A,(¢). On the other hand, in
the non-parametric model, no specific distribution is
assumed. Note that the non-parametric method
cannot always guarantee an accurate estimation
because of the lack of knowledge about the lifetime
distribution. In this article, the constant function is
used for A,(r) and the exponential form, exp(sr;)
for w(s,n).

Covariates are associated with the equipment’s
environmental and operational conditions. 1 is the
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effect of the covariates. The equipment’s
environmental and operational conditions vary even
within the same field. For example, in Martorell,
Sanchez and Serradell (1999), it was reported that
equipments at nuclear power plants worked under
very different operational and environmental
conditions; For instance, some components were
placed in a very stressful environment under high
temperature and doses of radiation, while others
remained in a stress-free environment. In addition,
generally, the conditions under which a product is
used cannot always be known before it is installed.
We assume that the covariates are random variables
for these variability and uncertainty of the covariates.
When the covariates in PHM are identically and
independently distributed (i.i.d.) discrete random
variables and the baseline hazards function is a
constant one, the failure model is reduced to the
following mixture form of PHM:

7e)= f p;Ae exp(— Ae’f”z) [9))

i=1

It is assumed in this article that the support of the
random variable, s, is known.

The main purpose of this chapter is to estimate
lifetime distributions of the products whose failures
can be modeled by the mixture of PHM of (2).

2. Literature Review

The mixed PHM is a kind of mixture model. The
extensive applicability of the mixture model has
generated much research on them. The existing
results were classified and introduced by Titterington,
et al (1985), Everitt and Hann (1981), and
McLachlan and Basford (1987). The finite mixed
exponential distribution and the finite mixed Weibull

distribution are good candidates to model failure time.

McClean (1986) considered the mixed exponential
distribution with grouped follow-up data, when the
number of components is known. Lau (1998)
estimated hazard rates using both the mixture of
geometrics and the mixture of exponential models.
Jiang and Kececioglu (1992a) and Jiang and Murthy
(1995) used graphical approaches and Jiang and
Kececioglu (1992b) used the method of maximum
likelihood for estimation problem in the mixed
Weibull distributions with censored data. Jaisingh et
al (1993) considered the influence of the work
environment by using a Weibull & inverse Gaussian
mixture. Hirose (1997) dealt with the power-law
mixture model which extends the power-law model
in accelerated life testing. Sy and Taylor (2000) and
Peng and Dear (2000) involved the mixture models
in PHM to estimate cure rates. They assumed no
specific distribution for the baseline hazard function
and use nonparametric two mixture models.

Kim, Yun & Dohi (2003) considered the Weibull
lifetime distribution in the mixed PHM with two
types of incomplete data.

3. Estimation Method

In this section we introduce the maximum
likelihood method for estimating parameters of the
mixed PHM. Not only is it appealing on intuition
grounds, but it also possesses desirable statistical
properties. For example, under very general
conditions, the estimators obtained by the method are
consistent and they are asymptotically normally
distributed. The starting point for any particular
investigation is a consideration of the form in which
data are obtained.

In most applications, the data take the form of a
random sample of observations where the
distribution of each observation is described by a
mixed PHM of the form of (2) — we will call them
uncategorized field observations. In addition to the
random sample from the mixed PHM there may also
be random samples available of observations of
which underlying categories are known. We will call
them categorized experiment observations because
experimental conditions are predetermined before
conducting experiments and so the covariate of an
experimental unit is known before testing. Moreover,
if the categorized observations can be assumed to
arise independently, with incidence rates p,,..., p;
for individual categories, then this provides further
information about the mixing weights — we will call
them categorized field observations.

We use maximum likelihood techniques and the
Expectation-Maximization (EM) algorithm to
estimate distribution parameters, mixing proportions
and a regression parameter with uncategorized field
observations, categorized field observations and
categorized experiment observations.

We consider the constant baseline hazard function.
Then, the likelihood and log-likelihood functions are,
respectively:

Lly)= ﬁipjles’” exp(— lesj”x,-)

i=1 j=1

g G . 5.
x[ [T ] pide 7 exp(— e ﬂy,-j) 3

i=1 j=1

d;
x ﬁniesf" exp(— Aesf"z,]-)

i=1 j=1

log L{w)= ilog{i pjlesj" exp(— Ae’x, )}
i=1
4)

J=

3

+ I (log/l +5,77— Aes"’7wi/)+ ici log p;
i=1

i=1j
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The problem is to obtain the estimates of  which
maximize L(l//). However, it is not easy to find the
MLE:s in the traditional way of differentiating L with
respect to  and setting it equal to zero, because the
likelihood function often becomes a complex multi-
modal function. An alternative way is to apply an
iterative algorithm such as the EM algorithm.

The EM algorithm is a broadly applicable
approach to the iterative computation of maximum
likelihood estimates, useful in a variety of
incomplete-data problems. The EM algorithm finds
estimate by iteratively performing two steps: the
expectation step (E-step), and the maximization step
(M-step). In the E-step, we calculate the conditional
expectation of the log-likelihood function for
complete data. In the M-step, we search parameter
values maximizing the conditional expectation. The
EM algorithm can be applied to the mixed PHM by
augmenting the observed data with the unobserved
indicator variables to represent the values of the
covariates of field units. That is, in order to pose this
problem as an incomplete-data one, we now
intfroduce as the unobservable or missing data,
vector:

v=(v;r,...,v:)r (%)

where v; is a g-dimensional vector of zero-one
indicator variables and where v; is one or zero
accordmg to whether the covariate for x; is s; or not,
and v T is the transpose of v;. Then the log-likelihood
for the complete data is given by:

log Lo (w)= zg:ivij (logp,- +logA +s,m - /les""xj)
i=1 j=1

+ZZ(logl+s,r) YR )+2c log p;

i=l j=1

(6)

The w-th E-step requires the calculation of the
expectation of the complete data log-likelihood,
log L (), conditional on the observed data and the
current fit "™ for y .

Q(W;W('W”)= E{logLC(y/Xx,y’y,(w-l)}

1]

'Mm: M

I
L
R

Z": (111 /"/’(w ')Xlogp, +log A +s;1~Ae*x, )

(logl+s77 Ae*w; ) Zc log p;

[\4ET

(7}
This step is affected here simply by replacing each
indicator variable v; by its expectation conditional on
x; which is given by:

Byl )=aln ) )

In the E-step, we calculate £ (v,.j 'x j;l//(”"') ) as

- , L lw=1) 1) st
pi(u l)/-('(u,—i)es,q ! exp(— A(nr I)e iU} l)xj)

iPk(w_]),l(“"—’)exk’l(wfl) exp(— A1), s fj
k=1
®)

On the w-th M-step, the intent is to choose the new
value of y, say w® that maximize Qly,y""
which, from the E step, is equal here to log LC(I//
with each v; replaced by 7, xj;t//(w‘1 . One nice
feature of the EM algorithm is that the solution to the
M-step often exists in a closed. form. However, we
can’t obtain the closed form of w in our cases and
need some numerical search techniques.

In the M-step, we find the new values of i, say

"/ that maximize Q(y/,y/(w_l)). Differentiating
the function Q with respect to 4 and 7 in turn
and equating to zero, we obtain the maximizing
equations:

i

1-3 Y we =0

i=1 j=1 i=1 j=1
(10)
@=iify(s, ﬂs,xjesi")+2§(s ~ As;w, es"’) 0
on HA i=1 j=1
(1D

Theorem 1: For fixed (p,n), the function Q in (7) is
concave with respect to A. For fixed (p, 1), the
Sunction Q is concave with respect to 1.

Proof : The second order conditions for the
parameters A and 7 are derived as:
0’0 1
— =——\n+mg,, (12)
o X ( )

M=

3’0 &
ZZ

i=

,, -es"” —Zmz ;W e’ (13)

1

il

J

They are negative in A and 7, respectively. []

By eliminating A from these two equations and
simplifying them, we get:
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S5 st + 33 s

i=1 j=1 i=] j=1

Sum) g m;
']
[zza, o ZZwJ

J (14)

n(w) can be obtained from (14) using a line search.
Theorem 1 guarantees the accuracy and effectiveness
of the line search technique.

Using 7 w) , the renewed parameter A
obtained from (15) as follows:

=(n+c

X

=1 =1 i=1 j=1

P can be calculated as (16) by the method similar

to the generic mixture distributions.(Refer to Kim et
al(2003))

j

Note that (14), (15), and (16) do not give the
estimators explicitly; instead they must be solved
using the general EM iterative procedure.

4. Experimental Results

Simulation experiments are carried out to
investigate the accuracy of the estimation. The failure
times of a unit in the kAth group (component), are
generated as follows:

t=—logU/Aexp(s,n) 17

where U is a uniform (0,1) random variable.

The failure times of uncategorized field units are
generated from (17) with the covariate generated
from P(s=sk)=pk, ( k=1... g). The number of
simulation runs is set to be 200 for each case. Mean
squared error (MSE) is calculated for evaluating the
accuracy.

4.1 Analysis with the Only Uncategorized Field
Observations

The effect of the number of the uncategorized
field observations is investigated when any
categorized observations are not collected. The input
values of the parameters are set to be A=15,
n=2, p;=02,p,=05,p;=03,5,=0.1,5,=0.5
and s; = 1. We calculate MSE of p) and 7, and
average of the MSEs of p|, p, and p;. Table 1 shows
that a lot of data are needed for accurate estimation

when there are only uncategorized field observations.
However, the monotone decreasing property of MSEs
for all the estimates of parameters roughly implies
the consistency of the estimation.

Table 1. MSE as the number of uncategorized field

observations
n 10 30 100 1000
MSE /{ 6.4292 1.8408 0.3079 0.0381
MSE\(n 2.9727 1.4281 0.3652 0.0357
MSE(ﬁ 0.0363 0.0207 0.0093 0.0048

4.2 Effect of the Number of Two Types of Field
Observations

The second experiment is performed to
investigate which information is more important
between the number of uncategorized field
observations and the number of categorized field H
ones. The same input values of the parameter as the
first experiment are used and nine combinations (n,
¢) are considered. Table 2 represents MSEs of the
estimates. The accuracy of the estimation is higher as
both the number of complete observations and the
number of incomplete observations increase.
However, it is noticeable that the precision of A, 7
and p are more sensitive to the number of the
categorized field observations.

Table 2. MSE as the number of the uncategorized and
categorized field observations.

n cum MSE(i) MSE(3) MSEQ
10 1.9240 1.3748 0.0169
10 30 0.2690 0.3577 0.0063
100 0.0980 0.0870 0.0020
10 0.5091 0.5942 0.0176
30 30 0.2300 0.2114 0.0061
100 0.0767 0.0777 0.0020
10 0.2741 0.2567 0.0100
100 30 0.1621 0.1722 0.0054
100 0.0656 00734 0.0018

4.3 Effect of the Number of Uncategorized Field
and Categorized Experiment Observations

The same type of experiment in Section 4.2 is
performed with the uncategorized field observations
and the experiment ones. The same input values of
the parameters as Section 4.2 are used. Table 3 shows
MSE of the estimates. The accuracy of the estimation
becomes higher as both the number of uncategorized
field observations and the number of categorized
experimental ones increases. It is noticeable that the
precision of A and # is more sensitive to the
number of experiment observations than the number
of uncategorized field ones. On the other hand, that
of p is much more sensitive to the number of
uncategorized filed observations.
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Table 3. MSE as the number of uncategorized and
experimental observations

n d MSE(i) MSE(;) MSE{
10 0.2141 “0.2211 0.0571
10 30 0.1037 0.0805 0.0643
100 0.0234 0.0234 0.0625
10 0.2752 0.2033 0.0317
30030 00612 00660 0.0299
100 0.0276 0.0275 0.0296
10 0.1367 0.1556 0.0111
100 30 0.08006 0.0644 0.0080
100 0.0194 0.0229 0.0076
5. CONCLUDING REMARKS

We dealt with an estimation problem for the
mixed proportional hazards model with the constant
hazards function and proposed the estimation method
based on the EM algorithm. It was shown in the
simulation studies that the accuracy of the estimation
was improved as the number of two types of field
observations and  experimental  observations
increased. The precision of 4 and 7 was shown
to be more sensitive to the number of two types of
categorized observations than the uncategorized field
observations. However, that of p was much more
sensitive to the number of the field observations.
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