• Title/Summary/Keyword: ELEVATED $CO_2$

Search Result 482, Processing Time 0.025 seconds

Interactions of nitrogen supplying level and elevated CO2 on Growth and Photosynthesis of Picea koraiensis Nakai seedlings

  • Wang Y.J.;Mao Z.J.;Park K.W.
    • Proceedings of the Korean Society for Bio-Environment Control Conference
    • /
    • 2004.11a
    • /
    • pp.139-143
    • /
    • 2004
  • To evaluate the biological and physiological response of Picea koraiensis Nakai to elevated $CO_2$ and nitrogen.3-year old seedlings were planted in an ambient and 700 ppm $CO_2$ at low (2mM $NH_4NO_3$) or high nitrogen (16mM $NH_4NO_3$) supplying treatments for 3 months. Photosynthetic parameters were measured monthly. Seedlings were harvested at monthly intervals and growth parameters of root system, stem and needle fractions were evaluated. The result showed that height of the seedlings grown at both of elevated $CO_2Xhigh$ nitrogen and elevated CO2×low nitrogen supplying treatments increased significantly more than that of at ambient CO2 treatments. Seedlings grown at elevated $CO_2Xhigh$ nitrogen produced more root biomass than at elevated $CO_2Xlow$ nitrogen and ambient $CO_2Xhigh$ nitrogen treatments. This result suggested that the root growth response of Picea koraiensis seedlings was greater in elevated $CO_2{\times}high$ nitrogen regime, which is very important for carbon sequestration in soil. $A_{max}$ of the seedlings grown at elevated $CO_2Xhigh$ nitrogen increased during the three months significantly, and $A_{max}$ of the seedlings grown at the other three treatments decreased significantly, suggesting that the interaction between elevated $CO_2$ and high nitrogen supplying stimulates the $A_{max}$ of Picea koraiensis. $A_{max}$ of the seedlings grown at elevated $CO_2Xlow$ nitrogen showed higher than other three treatments in the first month of the experiment, but decreased in succedent two months, suggesting that elevated $CO_2$ promotes the photosynthesis of the seedlings. However long term growth in elevated $CO_2Xlow$ nitrogen supplying condition resulted in an acclimatory decreased in leaf photosynthesis.

  • PDF

Effects of Elevated $CO_2$ and Global Warming on Growth Parameters, Biomass Production and Its Partitioning of Rice ($CO_2$ 농도의 상승과 온난화환경이 수도의 생장, 물질생산 및 그 분배에 미치는 영향)

  • 김한용
    • Korean Journal of Plant Resources
    • /
    • v.11 no.1
    • /
    • pp.80-85
    • /
    • 1998
  • The influence of elevated CO2 and temperature on growth parameters, biomass production and its partitioning of rice (Oryza sativa L.cv. Chukwangbyeo) were investigated in the three experiments (1991-1993). Rice plants were grown from transplanting to harvest at either ambient(350ppm) or elevated CO2 concentrations (690 or 650ppm) in combination with either four or seven temperature regimes ranging form ambient temperature (AT) to AT plus 3$^{\circ}C$.From transplanting to panicle initiation, crop growth rate (CGR) was enhanced by up to 27% with elevated CO2 , primarily due to an an increase in leaf area index. although net assimilatiion rate was also greater at elevated CO2. The effect of elevated CO2 varied with temperature. During the reproductive phase, CGR declined linearly with increased temperature, and was greater at elevated CO2 . Elevated CO2 increased final crop biomass and panicle weight 30% respectively at AT(27.6$^{\circ}C$ : 1991) . However, there was no significant effect of elevated CO2 on panicle weight at AT plus 3$^{\circ}C$, where severe spikelet sterility occurred. There was no significant effect of elevated CO2 on panicle weight at AT plus 3$^{\circ}C$, where severe spikelet sterility occurred. There was also no effect of CO2 on biomass pratitioning into vegetative and reproductive organs (harvest index)) at AT, although higher temperature could affect that by inducing spikelet sterility. These results suggest that elevated CO2 could enhance rice producivity througth promoted growth and biomass production , but its positive effects may be less at higher temperatures.

  • PDF

Effects of Elevated $CO_2$ and Temperature on Competition between Rice and Echinochloa glabrescens Seedlings

  • Kim, Han-Yong
    • Plant Resources
    • /
    • v.1 no.1
    • /
    • pp.43-48
    • /
    • 1998
  • The objective of this study was to determine how elevated $CO_2$ and temperature affected early growth and competition between direct seeded rice (Oryza sativa) and a common paddy weed (Echinochloa glabrascens). By using temperature gradient chambers. Rice and E. glabrescens were grown for 5 weeks at ratios of 1:0. 3:1 and 0:1 at three temperatures ($16.4^{\circ}C,\;19.8^{\circ}C,\;and\;22.2^{\circ}C$) and either in ambient (361ppm) or elevated (566ppm) $CO_2$. For both species. elevated $CO_2$ had no effect on mainstem leaf number while air temperature had a slight positive effect which was greater in E. glabrescens than rice. With elevated $CO_2$ rice leaf area index and plant height increased alightly in all species combinations but no increases were observed for E. Glabuescens. For rice in all combinations. elevated $CO_2$ tended to increase the rot and total biomass much more than any other growth parameters: the increases in root and total biomass resulting from elevated $CO_2$ ranged from 16% to 40%. depending on air temperature. At the lowest temperature, the decrease in rice biomass in combination with E. glabrescens was significantly greater at elevated $CO_2$ (18%) than ambient $CO_2$ (3%). At the highest temperature, however, the decrease in rice biomass at elevated $CO_2$ (22%) was less than that at ambient $CO_2$ (36%). The competitive ability of rice as measured by the decrease in biomass when grown in combination with E. glabrescens depended strongly on root growth and/or allocation. These results suggest that at higher temperatures elevated $CO_2$ could enhance the competitive ability of direct seeded rice during early growth. However, at lower temperatures. the competitive ability of E. glabrescens seems to be greater.

  • PDF

Photosynthesis and Growth Responses of Soybean (Glycine max Merr.) under Elevated CO2 Conditions (대기 중 CO2 상승 조건에서 재배되는 콩의 광합성과 생장 반응의 분석)

  • Oh, Soonja;Koh, Seok Chan
    • Journal of Environmental Science International
    • /
    • v.26 no.5
    • /
    • pp.601-608
    • /
    • 2017
  • The effects of elevated atmospheric $CO_2$ on growth and photosynthesis of soybean (Glycine max Merr.) were investigated to predict its productivity under elevated $CO_2$ levels in the future. Soybean grown for 6 weeks showed significant increase in vegetative growth, based on plant height, leaf characteristics (area, length, and width), and the SPAD-502 chlorophyll meter value (SPAD value) under elevated $CO_2$ conditions ($800{\mu}mol/mol$) compared to ambient $CO_2$ conditions ($400{\mu}mol/mol$). Under elevated $CO_2$ conditions, the photosynthetic rate (A) increased although photosystem II (PS II) photochemical activity ($F_v/F_m$) decreased. The maximum photosynthetic rate ($A_{max}$) was higher under elevated $CO_2$ conditions than under ambient $CO_2$ conditions, whereas the maximum electron transport rate ($J_{max}$) was lower under elevated $CO_2$ conditions compared to ambient $CO_2$ conditions. The optimal temperature for photosynthesis shifted significantly by approximately $3^{\circ}C$ under the elevated $CO_2$ conditions. With the increase in temperature, the photosynthetic rate increased below the optimal temperature (approximately $30^{\circ}C$) and decreased above the optimal temperature, whereas the dark respiration rate ($R_d$) increased continuously regardless of the optimal temperature. The difference in photosynthetic rate between ambient and elevated $CO_2$ conditions was greatest near the optimal temperature. These results indicate that future increases in $CO_2$ will increase productivity by increasing the photosynthetic rate, although it may cause damage to the PS II reaction center as suggested by decreases in $F_v/F_m$, in soybean.

Response of Soybean Growth to Elevated $CO_{2}$ Conditions

  • Kim Young-Guk;Lee Jae-Eun;Kim Sok-Dong;Shin Jin-Chul
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.51 no.4
    • /
    • pp.303-309
    • /
    • 2006
  • The study examined the effects of $CO_2$ enrichment on growth of soybean (Glycine max). Two soybean varieties were used, Taekwang and Cheongja. The plants were grown in growth chambers with a 12-h photoperiod and a day/night temperature of $28/21^{\circ}C$ at the seedling stage and $30/23^{\circ}C$ from the flowering stage. The plants were exposed to the two elevated $CO_2$ levels of 500 and 700 ppm and the ambient level of 350 ppm. Results of the experiment showed that at the second-node trifoliate stage of the two varieties, the elevated $CO_2$ increased plant height, leaf area and dry weight. The elevated $CO_2$ also raised the photosynthetic rate of soybean as compared to the ambient level. From the beginning bloom stage to the full maturity stage of the two varieties, the elevated $CO_2$ increased plant height, leaf area, seed weight and photosynthetic rate. The stomatal conductance and transpiration rate decreased on long days relative to short days of treatment. Through the entire stages, the elevated $CO_2$ increased the water use efficiency of soybean plants because stomatal conductance and transpiration rate decreased at the elevated $CO_2$ levels relative to the ambient level.

Plant Architecture and Flag Leaf Morphology of Rice Crops Exposed to Experimental Warming with Elevated CO2

  • Vu, Thang;Kim, Han-Yong
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.56 no.3
    • /
    • pp.255-263
    • /
    • 2011
  • Projected increases in atmospheric $CO_2$ concentration ([$CO_2$]) and temperature ($T_a$) have the potential to alter in rice growth and yield. However, little is known about whether $T_a$ warming with elevated [$CO_2$] modify plant architecture. To better understand the vertical profiles of leaf area index (LAI) and the flag leaf morphology of rice grown under elevated $T_a$ and [$CO_2$], we conducted a temperature gradient field chamber (TGC) experiment at Gwangju, Korea. Rice (Oryza sativa L. cv. Dongjin1ho) was grown at two [$CO_2$] [386 (ambient) vs 592 ppmV (elevated)] and three $T_a$ regimes [26.8 ($\approx$ambient), 28.1 and $29.8^{\circ}C$] in six independent field TGCs. While elevated $T_a$ did not alter total LAI, elevated [$CO_2$] tended to reduce (c. 6.6%) the LAI. At a given canopy layer, the LAI was affected neither by elevated [$CO_2$] nor by elevated $T_a$, allocating the largest LAI in the middle part of the canopy. However, the fraction of LAI distributed in a higher and in a lower layer was strongly affected by elevated $T_a$; on average, the LAI distributed in the 75-90 cm (and 45-60 cm) layer of total LAI was 9.4% (and 35.0%), 18.8% (25.9%) and 18.6% (29.2%) in ambient $T_a$, $1.3^{\circ}C$ and $3.0^{\circ}C$ above ambient $T_a$, respectively. Most of the parameters related to flag leaf morphology was negated with elevated [$CO_2$]; there were about 12%, 5%, 7.5%, 15% and 21% decreases in length (L), width (W), L:W ratio, area and mass of the flag leaf, respectively, at elevated [$CO_2$]. However, the negative effect of elevated [$CO_2$] was offset to some extent by $T_a$ warming. All modifications observed were directly or indirectly associated with either stimulated leaf expansion or crop phenology under $T_a$ warming with elevated [$CO_2$]. We conclude that plant architecture and flag leaf morphology of rice can be modified both by $T_a$ warming and elevated [$CO_2$] via altering crop phenology and the extent of leaf expansion.

Effects of elevated CO2 concentration and increased temperature on the growth and crop yield of rice (Oryza sativa) cultivars in Korea -cv. Odaebyeo and cv. Saechucheongbyeo- (CO2농도와 온도 상승이 한국의 주요 재배 벼품종의 생육과 생산량에 미치는 영향 -오대벼와 새추청벼-)

  • Lee, Eung Pill;Jang, Rae Ha;Cho, Kyu Tae;You, Young Han
    • Journal of Wetlands Research
    • /
    • v.16 no.4
    • /
    • pp.363-370
    • /
    • 2014
  • We grew seedlings of Saechucheongbyeo and Odaebyeo of rice cultivars that are cultivated dominantly in the northern and middle regions of Korea under control(ambient condition), ambient $CO_2$ concentration+elevated temperature, and elevated $CO_2$ concentration+elevated temperature in order to study how growth responses and crop yield of major rice of Korea change as the global warming proceeds and compared the results. Aboveground biomass, belowground biomass, total biomass, and panicles weight per individual and ripended grain rate of cv. Saechucheongbyeo were the highest under control, but those of cv. Odaebyeo were the highest under elevated $CO_2$ concentration+elevated temperature. There was no difference in the number of panicles per individual of cv. Saechucheongbyeo and cv. Odaebyeo in these experiments. There was no difference in the number of grains per panicle of cv. Saechucheongbyeo among three environmental gradients, but that of cv. Odaebyeo was the highest under elevated $CO_2$ concentration+elevated temperature. Weight of a grain of cv. Saechucheongbyeo was highest under elevated $CO_2$ concentration+elevated temperature, but that of cv. Odaebyeo was the higher under ambient $CO_2$ concentration+elevated temperature and elevated $CO_2$ concentration+elevated temperature. Thus, if global warming continues in Korea, selection of rice cultivation varieties must be chosen carefully for commendation.

Influence of Elevated CO2 and Air Temperature on Photosynthesis, Shoot Growth, and Fruit Quality of 'Fuji'/M.9 Apple Tree (CO2 및 기온 상승이 '후지'/M.9 사과나무의 광합성, 신초생장 및 과실품질에 미치는 영향)

  • Kweon, Hun-Joong;Sagong, Dong-Hoon;Park, Moo-Yong;Song, Yang-Yik;Chung, Kyeong-Ho;Nam, Jong-Chul;Han, Jeom-Hwa;Do, Gyung-Ran
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.15 no.4
    • /
    • pp.245-263
    • /
    • 2013
  • This study was conducted to find out the influence of elevated atmospheric $CO_2$ concentrations and air temperature on photosynthesis and fruit quality of 'Fuji'/M.9 apple trees and to investigate these to the effects of climate change during the last four years (2009-2012). The treatments employed were: 'Ambient' (ambient temperature + ambient $CO_2$ concentration); 'High $CO_2$' (ambient temperature + elevated $CO_2$ concentration); 'High Temp'. (elevated temperature + ambient $CO_2$ concentration); and 'High $CO_2$ + High Temp'. (elevated temperature + elevated $CO_2$ concentration). The elevated temperature plots were maintained at $4^{\circ}C$ higher than ambient air temperature, while the elevated $CO_2$ plots were maintained at 700 ${\mu}mol{\cdot}mol^{-1}$. Annual treatment period was applied from end of April to beginning of November for four years. Results showed that elevated $CO_2$ decreased stomatal conductance and leaf SPAD value, but increased photosynthetic rate, intercellular $CO_2$ concentration (Ci), and starch content of mesophyll tissue. In the vegetative growth, elevated temperature increased total number of shoot and total shoot growth per tree, but elevated $CO_2$ decreased average shoot length. In the fruit quality, elevated $CO_2$ increased soluble solid content, fruit red color, and ethylene production. In conclusion, elevated $CO_2$ increased photosynthetic rate of apples during the early growth, but effect of increased photosynthetic rate due to elevated $CO_2$ was decreased during latter growth stage. Elevated temperature, on the other hand, tended to decrease photosynthetic rate of apples during the early growth, but that tended to increase during latter growth stage. Both elevated $CO_2$ and temperature tended to decrease the degree of decreased photosynthetic rate due to each factor.

Ecophysiological responses of Quercus gilva, endangered species and Q. glauca to long-term exposure to elevated CO2 concentration and temperature

  • Kim, Hae-Ran;You, Young-Han
    • Journal of Ecology and Environment
    • /
    • v.35 no.3
    • /
    • pp.203-212
    • /
    • 2012
  • The physiological effects of elevated $CO_2$ concentration and temperature were examined for Quercus gilva and Q. glauca grown under control (ambient $CO_2$ and temperature) and treatment (elevated $CO_2$ and temperature) conditions for 39 months. The objective of the study was to measure the long-term responses, in physiological parameters, of two oaks species exposed to elevated $CO_2$ and temperature. The photosynthetic rate of Q. gilva was found to be decreased, but that of Q. glauca was not significantly affected, after long-term exposure to elevated $CO_2$ and temperature. Stomatal conductance of Q. glauca was reduced by 21.7%, but that of Q. gilva was not significantly affected, by long-term exposure to $CO_2$ and temperature. However, the transpiration rate of the two oak species decreased. Water use efficiency of Q. gilva was not significantly affected by elevated $CO_2$ and temperature, while that of Q. glauca was increased by 56.6%. The leaves of Q. gilva grown under treatment conditions had an increased C:N ratio due to their reduced nitrogen content, while those of Q. glauca were not significantly affected by long-term exposure to elevated $CO_2$ and temperature. These results suggest that the long-term responses to elevated $CO_2$ and temperature between Q. gilva and Q. glauca are different, and that Q. gilva, the endangered species, is more sensitive to elevated $CO_2$ and temperature than Q. glauca.

Effects of elevated CO2 on growth of Pinus densiflora seedling and enzyme activities in soil

  • Kim, Sung-Hyun;Jung, Soo-Hyun;Kang, Ho-Jung;Lee, In-Sook
    • Journal of Ecology and Environment
    • /
    • v.33 no.2
    • /
    • pp.133-139
    • /
    • 2010
  • Atmospheric $CO_2$ concentrations have increased exponentially over the last century and, if continued, are expected to have significant effects on plants and soil. In this study, we investigated the effects of elevated $CO_2$ on the growth of Pinus densiflora seedling and microbial activity in soil. Three-year-old pine seedlings were exposed to ambient as well as elevated levels of $CO_2$ (380 and 760 ppmv, respectively). Growth rates and C:N ratios of the pine seedlings were also determined. Dissolved organic carbon content, phenolic compound content, and microbial activity were measured in bulk soil and rhizosphere soil. The results show that elevated $CO_2$ significantly increased the root dry weight of pine seedling. In addition, overall N content decreased, which increased the C:N ratio in pine needles. Elevated $CO_2$ decreased soil moisture, nitrate concentration, and the concentration of soil phenolic compounds. In contrast, soil enzymatic activities were increased in rhizosphere soil, including ${\beta}$-glucosidase, N-acetylglucosaminidase and phosphatase enzyme activities. In conclusion, elevated $CO_2$ concentrations caused distinct changes in soil chemistry and microbiology.