• Title/Summary/Keyword: EKF-SLAM

Search Result 33, Processing Time 0.025 seconds

A Position Estimation of Quadcopter Using EKF-SLAM (EKF-SLAM을 이용한 쿼드콥터의 위치 추정)

  • Cho, Youngwan;Hwang, Jaeyoung;Lee, Heejin
    • Journal of IKEEE
    • /
    • v.19 no.4
    • /
    • pp.557-565
    • /
    • 2015
  • In this paper, a method for estimating the location of a quadcopter is proposed by applying an EKF-SLAM algorithm to its flight control, to autonomously control the flight of an unmanned quadcopter. The usefulness of this method is validated through simulations. For autonomously flying the unmanned quadcopter, an algorithm is required to estimate its accurate location, and various approaches exist for this. Among them, SLAM, which has seldom been applied to the quadcopter flight control, was applied in this study to simulate a system that estimates flight trajectories of the quadcopter.

Symmetrical model based SLAM : M-SLAM (대칭모형 기반 SLAM : M-SLAM)

  • Oh, Jung-Suk;Sim, Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.4
    • /
    • pp.463-468
    • /
    • 2010
  • The mobile robot which accomplishes a work in explored region does not know location information of surroundings. Traditionally, simultaneous localization and mapping(SLAM) algorithms solve the localization and mapping problem in explored regions. Among the several SLAM algorithms, the EKF (Extended Kalman Filter) based SLAM is the scheme most widely used. The EKF is the optimal sensor fusion method which has been used for a long time. The odometeric error caused by an encoder can be compensated by an EKF, which fuses different types of sensor data with weights proportional to the uncertainty of each sensor. In many cases the EKF based SLAM requires artificially installed features, which causes difficulty in actual implementation. Moreover, the computational complexity involved in an EKF increases as the number of features increases. And SLAM is a weak point of long operation time. Therefore, this paper presents a symmetrical model based SLAM algorithm(called M-SLAM).

SLAM of a Mobile Robot using Thinning-based Topological Information

  • Lee, Yong-Ju;Kwon, Tae-Bum;Song, Jae-Bok
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.5
    • /
    • pp.577-583
    • /
    • 2007
  • Simultaneous Localization and Mapping (SLAM) is the process of building a map of an unknown environment and simultaneously localizing a robot relative to this map. SLAM is very important for the indoor navigation of a mobile robot and much research has been conducted on this subject. Although feature-based SLAM using an Extended Kalman Filter (EKF) is widely used, it has shortcomings in that the computational complexity grows in proportion to the square of the number of features. This prohibits EKF-SLAM from operating in real time and makes it unfeasible in large environments where many features exist. This paper presents an algorithm which reduces the computational complexity of EKF-SLAM by using topological information (TI) extracted through a thinning process. The global map can be divided into local areas using the nodes of a thinning-based topological map. SLAM is then performed in local instead of global areas. Experimental results for various environments show that the performance and efficiency of the proposed EKF-SLAM/TI scheme are excellent.

$H_{\infty}$ Filter Based Robust Simultaneous Localization and Mapping for Mobile Robots (이동로봇을 위한 $H_{\infty}$ 필터 기반의 강인한 동시 위치인식 및 지도작성 구현 기술)

  • Jeon, Seo-Hyun;Lee, Keon-Yong;Doh, Nakju Lett
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.48 no.1
    • /
    • pp.55-60
    • /
    • 2011
  • The most basic algorithm in SLAM(Simultaneous Localization And Mapping) technique of mobile robots is EKF(Extended Kalman Filter) SLAM. However, it requires prior information of characteristics of the system and the noise model which cannot be estimated in accurate. By this limit, Kalman Filter shows the following behaviors in a highly uncertain environment: becomes too sensitive to internal parameters, mathematical consistency is not kept, or yields a wrong estimation result. In contrast, $H_{\infty}$ filter does not requires a prior information in detail. Thus, based on a idea that $H_{\infty}$ filter based SLAM will be more robust than the EKF-SLAM, we propose a framework of $H_{\infty}$ filter based SLAM and show that suggested algorithm shows slightly better result man me EKF-SLAM in a highly uncertain environment.

EKF-based SLAM Using Sonar Salient Feature and Line Feature for Mobile Robots (이동로봇을 위한 Sonar Salient 형상과 선 형상을 이용한 EKF 기반의 SLAM)

  • Heo, Young-Jin;Lim, Jong-Hwan;Lee, Se-Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.10
    • /
    • pp.1174-1180
    • /
    • 2011
  • Not all line or point features capable of being extracted by sonar sensors from cluttered home environments are useful for simultaneous localization and mapping (SLAM) due to their ambiguity because it is difficult to determine the correspondence of line or point features with previously registered feature. Confused line and point features in cluttered environments leads to poor SLAM performance. We introduce a sonar feature structure suitable for a cluttered environment and the extended Kalman filter (EKF)-based SLAM scheme. The reliable line feature is expressed by its end points and engaged togather in EKF SLAM to overcome the geometric limits and maintain the map consistency. Experimental results demonstrate the validity and robustness of the proposed method.

EKF SLAM-based Camera Tracking Method by Establishing the Reference Planes (기준 평면의 설정에 의한 확장 칼만 필터 SLAM 기반 카메라 추적 방법)

  • Nam, Bo-Dam;Hong, Hyun-Ki
    • Journal of Korea Game Society
    • /
    • v.12 no.3
    • /
    • pp.87-96
    • /
    • 2012
  • This paper presents a novel EKF(Extended Kalman Filter) based SLAM(Simultaneous Localization And Mapping) system for stable camera tracking and re-localization. The obtained 3D points by SLAM are triangulated using Delaunay triangulation to establish a reference plane, and features are described by BRISK(Binary Robust Invariant Scalable Keypoints). The proposed method estimates the camera parameters from the homography of the reference plane when the tracking errors of EKF SLAM are much accumulated. Using the robust descriptors over sequence enables us to re-localize the camera position for matching over sequence even though the camera is moved abruptly.

EKF-based Simultaneous Localization and Mapping of Mobile Robot using Laser Corner Pattern Matching (레이저 코너 패턴의 매칭을 이용한 이동 로봇의 EKF 기반 SLAM)

  • Kim, Tae-Hyeong;Park, Tae-Hyoung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.12
    • /
    • pp.2094-2102
    • /
    • 2016
  • In this paper, we propose an extended Kalman filter(EKF)-based simultaneous localization and mapping(SLAM) method using laser corner pattern matching for mobile robots. SLAM is one of the most important problems of mobile robot. However, existing method has the disadvantage of increasing the computation time, depending on the number of landmarks. To improve computation time, we produce the corner pattern using classified and detected corner points. After producing the corner patterns, it is estimated that mobile robot's global position by matching them. The estimated position is used as measurement model in the EKF. To evaluated proposed method, we preformed the experiments in the indoor environments. Experimental results of proposed method are shown to maintain an accuracy and decrease the computation time.