• Title/Summary/Keyword: EKF

Search Result 385, Processing Time 0.03 seconds

Assessing the Impact of Climate Change on Water Resources: Waimea Plains, New Zealand Case Example

  • Zemansky, Gil;Hong, Yoon-Seeok Timothy;Rose, Jennifer;Song, Sung-Ho;Thomas, Joseph
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.18-18
    • /
    • 2011
  • Climate change is impacting and will increasingly impact both the quantity and quality of the world's water resources in a variety of ways. In some areas warming climate results in increased rainfall, surface runoff, and groundwater recharge while in others there may be declines in all of these. Water quality is described by a number of variables. Some are directly impacted by climate change. Temperature is an obvious example. Notably, increased atmospheric concentrations of $CO_2$ triggering climate change increase the $CO_2$ dissolving into water. This has manifold consequences including decreased pH and increased alkalinity, with resultant increases in dissolved concentrations of the minerals in geologic materials contacted by such water. Climate change is also expected to increase the number and intensity of extreme climate events, with related hydrologic changes. A simple framework has been developed in New Zealand for assessing and predicting climate change impacts on water resources. Assessment is largely based on trend analysis of historic data using the non-parametric Mann-Kendall method. Trend analysis requires long-term, regular monitoring data for both climate and hydrologic variables. Data quality is of primary importance and data gaps must be avoided. Quantitative prediction of climate change impacts on the quantity of water resources can be accomplished by computer modelling. This requires the serial coupling of various models. For example, regional downscaling of results from a world-wide general circulation model (GCM) can be used to forecast temperatures and precipitation for various emissions scenarios in specific catchments. Mechanistic or artificial intelligence modelling can then be used with these inputs to simulate climate change impacts over time, such as changes in streamflow, groundwater-surface water interactions, and changes in groundwater levels. The Waimea Plains catchment in New Zealand was selected for a test application of these assessment and prediction methods. This catchment is predicted to undergo relatively minor impacts due to climate change. All available climate and hydrologic databases were obtained and analyzed. These included climate (temperature, precipitation, solar radiation and sunshine hours, evapotranspiration, humidity, and cloud cover) and hydrologic (streamflow and quality and groundwater levels and quality) records. Results varied but there were indications of atmospheric temperature increasing, rainfall decreasing, streamflow decreasing, and groundwater level decreasing trends. Artificial intelligence modelling was applied to predict water usage, rainfall recharge of groundwater, and upstream flow for two regionally downscaled climate change scenarios (A1B and A2). The AI methods used were multi-layer perceptron (MLP) with extended Kalman filtering (EKF), genetic programming (GP), and a dynamic neuro-fuzzy local modelling system (DNFLMS), respectively. These were then used as inputs to a mechanistic groundwater flow-surface water interaction model (MODFLOW). A DNFLMS was also used to simulate downstream flow and groundwater levels for comparison with MODFLOW outputs. MODFLOW and DNFLMS outputs were consistent. They indicated declines in streamflow on the order of 21 to 23% for MODFLOW and DNFLMS (A1B scenario), respectively, and 27% in both cases for the A2 scenario under severe drought conditions by 2058-2059, with little if any change in groundwater levels.

  • PDF

An Optimization Approach for Localization of an Indoor Mobile Robot (최적화 기법을 사용한 실내 이동 로봇의 위치 인식)

  • Han, Jun Hee;Ko, Nak Yong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.26 no.4
    • /
    • pp.253-258
    • /
    • 2016
  • This paper proposes a method that utilizes optimization approach for localization of an indoor mobile robot. Bayesian filters which have been widely used for localization of a mobile robot use many control parameters to take the uncertainties in measurement and environment into account. The estimation performance depends on the selection of these parameter values. Also, the performance of the Bayesian filters deteriorate as the non-linearity of the motion and measurement increases. On the other hand, the optimization approach uses fewer control parameters and is less influenced by the non-linearity than the Bayesian methods. This paper compares the localization performance of the proposed method with the performance of the extended Kalman filter to verify the feasibility of the proposed method. Measurements of ranges from beacons of ultrasonic satellite to the robot are used for localization. Mahalanobis distance is used for detection and rejection of outlier in the measurements. The optimization method sets performance index as a function of the measured range values, and finds the optimized estimation of the location through iteration. The method can improve the localization performance and reduce the computation time in corporation with Bayesian filter which provides proper initial location for the iteration.

Localization Using Extended Kalman Filter based on Chirp Spread Spectrum Ranging (확장 Kalman 필터를 적용한 첩 신호 대역확산 거리 측정 기반의 위치추정시스템)

  • Bae, Byoung-Chul;Nam, Yoon-Seok
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.49 no.4
    • /
    • pp.45-54
    • /
    • 2012
  • Location-based services with GPS positioning technology as a key technology, but recognizing the current location through satellite communication is not possible in an indoor location-aware technology, low-power short-range communication is primarily made of the study. Especially, as Chirp Spread Spectrum(CSS) based location-aware approach for low-power physical layer IEEE802.15.4a is selected as a standard, Ranging distance estimation techniques and data transfer speed enhancements have been more developed. It is known that the distance measured by CSS ranging has quite a lot of noise as well as its bias. However, the noise problem can be adjusted by modeling the non-zero mean noise value by a scaling factor which corresponds to the change of magnitude of a measured distance vector. In this paper, we propose a localization system using the CSS signal to measure distance for a mobile node taken a measurement of the exact coordinates. By applying the extended kalman filter and least mean squares method, the localization system is faster, more stable. Finally, we evaluate the reliability and accuracy of the proposed algorithm's performance by the experiment for the realization of localization system.

Precise Relative Positioning for Formation Flying Satellite using GPS Carrier-phase Measurements (GPS 반송파 위상을 사용한 편대비행위성 상대위치결정 연구)

  • Park, Jae-Ik;Lee, Eunsung;Heo, Moon-Beom
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.12
    • /
    • pp.1032-1039
    • /
    • 2012
  • The present paper deals with precise relative positioning of formation satellites with long baseline in low Earth orbit making use of L1/L2 dual frequency GPS carrier phase measurements. Kinematic approach means to describe the motion of objects without taking its mass/dynamics model into consideration. The advantage of the kinematic approach is that information about dynamics of the system is not applied, which gives more flexibility and could improve the scientific interest of the observations made by the mission. The ionosphere terms, which are not canceled by double differenced measurement equation in the case of the long baseline, are explicitly estimated as unknown parameters by extended Kalman filter. The estimated float ambiguities by EKF are solved by existing efficient integer vector search strategy under integer least square condition. For the integer vector search, we employ well known MLAMBDA. Finally, The feasibility and accuracy of processing scheme are demonstrated using the GPS measurements for two satellites in low Earth orbit separated by baselines of 100 km.

Pedestrian Dead Reckoning based Position Estimation Scheme considering Pedestrian's Various Movement Type under Combat Environments (전장환경 하에서 보행자의 다양한 이동유형을 고려한 관성항법 기반의 위치인식 기법)

  • Park, SangHoon;Chae, Jongmok;Lee, Jang-Myung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.10
    • /
    • pp.609-617
    • /
    • 2016
  • In general, Personal Navigation Systems (PNSs) can be defined systems to acquire pedestrian positional information. GPS is an example of PNS. However, GPS can only be used where the GPS signal can be received. Pedestrian Dead Reckoning (PDR) can estimate the positional information of pedestrians using Inertial Measurement Unit (IMU). Therefore, PDR can be used for GPS-disabled areas. This paper proposes a PDR scheme considering various movement types over GPS-disabled areas as combat environments. We propose a movement distance estimation scheme and movement direction estimation scheme as pedestrian's various movement types such as walking, running and crawling using IMU. Also, we propose a fusion algorithm between GPS and PDR to mitigate the lack of accuracy of positional information at the entrance to the building. The proposed algorithm has been tested in a real test bed. In the experimental results, the proposed algorithms exhibited an average position error distance of 5.64m and position error rate in goal point of 3.41% as a pedestrian traveled 0.6km.