• Title/Summary/Keyword: EGSnrc 코드

Search Result 6, Processing Time 0.019 seconds

Determination of Quality Correction Factors for a Plane-Parallel Chamber in High Energy Electron Beams using Monte Carlo Calculation (몬테칼로 계산을 이용한 평판형 전리함의 고에너지 전자선에 대한 선질보정인자 결정)

  • Jeong, Dong-Hyeok;Lee, Jeong-Ok
    • Journal of radiological science and technology
    • /
    • v.31 no.1
    • /
    • pp.89-95
    • /
    • 2008
  • The quality correction factor for used beam and qualities is strongly required for clinical dosimetry by TRS-398 protocol of IAEA. In this study the quality correction factors for a commercial plane-parallel ionization chamber in high energy electron beams were calculated by Monte Carlo code(DOSRZnrc/EGSnrc). In comparison of quality correction factor, the difference between this study and TRS-398 were within 1% in 5-20 MeV. In case of 4MeV the difference was 1.9%. As an independent method of determination of quality correction factor this study can be applied to evaluate values in the protocol or calculate the factor for a new chamber.

  • PDF

Calculation of Dose Distribution for SBRT Patient Using Geant4 Simulation Code (Geant4 전산모사 코드를 이용한 SBRT 환자의 선량분포 계산)

  • Kang, Jeongku;Lee, Jeongok;Lee, Dong Joon
    • Progress in Medical Physics
    • /
    • v.26 no.1
    • /
    • pp.36-41
    • /
    • 2015
  • The Monte Carlo based dose calculation program for stereotactic body radiotherapy was developed in this study. The Geant4 toolkit widely used in the radiotherapy was used for this study. The photon energy spectrum of the medical linac studied in the previous research was applied for the patient dose calculations. The geometry of the radiation fields defined by multi-leaf collimators were taken into account in the PrimaryGeneratorAction class of the Geant4 code. The total of 8 fields were demonstrated in the patient dose calculations, where rotation matrix as a function of gantry angle was used for the determination of the source positions. The DicomHandler class converted the binary file format of the DICOM data containing the matrix number, pixel size, endian type, HU number, bit size, padding value and high bits order to the ASCII file format. The patient phantom was constructed using the converted ASCII file. The EGSnrc code was used to compare the calculation efficiency of the material data.

Application of Variance Reduction Techniques for the Improvement of Monte Carlo Dose Calculation Efficiency (분산 감소 기법에 의한 몬테칼로 선량 계산 효율 평가)

  • Park, Chang-Hyun;Park, Sung-Yong;Park, Dal
    • Progress in Medical Physics
    • /
    • v.14 no.4
    • /
    • pp.240-248
    • /
    • 2003
  • The Monte Carlo calculation is the most accurate means of predicting radiation dose, but its accuracy is accompanied by an increase in the amount of time required to produce a statistically meaningful dose distribution. In this study, the effects on calculation time by introducing variance reduction techniques and increasing computing power, respectively, in the Monte Carlo dose calculation for a 6 MV photon beam from the Varian 600 C/D were estimated when maintaining accuracy of the Monte Carlo calculation results. The EGSnrc­based BEAMnrc code was used to simulate the beam and the EGSnrc­based DOSXYZnrc code to calculate dose distributions. Variance reduction techniques in the codes were used to describe reduced­physics, and a computer cluster consisting of ten PCs was built to execute parallel computing. As a result, time was more reduced by the use of variance reduction techniques than that by the increase of computing power. Because the use of the Monte Carlo dose calculation in clinical practice is yet limited by reducing the computational time only through improvements in computing power, introduction of reduced­physics into the Monte Carlo calculation is inevitable at this point. Therefore, a more active investigation of existing or new reduced­physics approaches is required.

  • PDF

Benchmark Results of a Monte Carlo Treatment Planning system (몬데카를로 기반 치료계획시스템의 성능평가)

  • Cho, Byung-Chul
    • Progress in Medical Physics
    • /
    • v.13 no.3
    • /
    • pp.149-155
    • /
    • 2002
  • Recent advances in radiation transport algorithms, computer hardware performance, and parallel computing make the clinical use of Monte Carlo based dose calculations possible. To compare the speed and accuracies of dose calculations between different developed codes, a benchmark tests were proposed at the XIIth ICCR (International Conference on the use of Computers in Radiation Therapy, Heidelberg, Germany 2000). A Monte Carlo treatment planning comprised of 28 various Intel Pentium CPUs was implemented for routine clinical use. The purpose of this study was to evaluate the performance of our system using the above benchmark tests. The benchmark procedures are comprised of three parts. a) speed of photon beams dose calculation inside a given phantom of 30.5 cm$\times$39.5 cm $\times$ 30 cm deep and filled with 5 ㎣ voxels within 2% statistical uncertainty. b) speed of electron beams dose calculation inside the same phantom as that of the photon beams. c) accuracy of photon and electron beam calculation inside heterogeneous slab phantom compared with the reference results of EGS4/PRESTA calculation. As results of the speed benchmark tests, it took 5.5 minutes to achieve less than 2% statistical uncertainty for 18 MV photon beams. Though the net calculation for electron beams was an order of faster than the photon beam, the overall calculation time was similar to that of photon beam case due to the overhead time to maintain parallel processing. Since our Monte Carlo code is EGSnrc, which is an improved version of EGS4, the accuracy tests of our system showed, as expected, very good agreement with the reference data. In conclusion, our Monte Carlo treatment planning system shows clinically meaningful results. Though other more efficient codes are developed such like MCDOSE and VMC++, BEAMnrc based on EGSnrc code system may be used for routine clinical Monte Carlo treatment planning in conjunction with clustering technique.

  • PDF

Dose Verification Study of Brachytherapy Plans Using Monte Carlo Methods and CT Images (CT 영상 및 몬테칼로 계산에 기반한 근접 방사선치료계획의 선량분포 평가 방법 연구)

  • Cheong, Kwang-Ho;Lee, Me-Yeon;Kang, Sei-Kwon;Bae, Hoon-Sik;Park, So-Ah;Kim, Kyoung-Joo;Hwang, Tae-Jin;Oh, Do-Hoon
    • Progress in Medical Physics
    • /
    • v.21 no.3
    • /
    • pp.253-260
    • /
    • 2010
  • Most brachytherapy treatment planning systems employ a dosimetry formalism based on the AAPM TG-43 report which does not appropriately consider tissue heterogeneity. In this study we aimed to set up a simple Monte Carlo-based intracavitary high-dose-rate brachytherapy (IC-HDRB) plan verification platform, focusing particularly on the robustness of the direct Monte Carlo dose calculation using material and density information derived from CT images. CT images of slab phantoms and a uterine cervical cancer patient were used for brachytherapy plans based on the Plato (Nucletron, Netherlands) brachytherapy planning system. Monte Carlo simulations were implemented using the parameters from the Plato system and compared with the EBT film dosimetry and conventional dose computations. EGSnrc based DOSXYZnrc code was used for Monte Carlo simulations. Each $^{192}Ir$ source of the afterloader was approximately modeled as a parallel-piped shape inside the converted CT data set whose voxel size was $2{\times}2{\times}2\;mm^3$. Bracytherapy dose calculations based on the TG-43 showed good agreement with the Monte Carlo results in a homogeneous media whose density was close to water, but there were significant errors in high-density materials. For a patient case, A and B point dose differences were less than 3%, while the mean dose discrepancy was as much as 5%. Conventional dose computation methods might underdose the targets by not accounting for the effects of high-density materials. The proposed platform was shown to be feasible and to have good dose calculation accuracy. One should be careful when confirming the plan using a conventional brachytherapy dose computation method, and moreover, an independent dose verification system as developed in this study might be helpful.