• 제목/요약/키워드: EGR Rate

검색결과 164건 처리시간 0.02초

직분식 소형 과급 디젤엔진에서 EGR이 배기배출물에 미치는 영향 (The Effect of EGR on Exhaust Emissions in a Direct Injection Diesel Engine)

  • 장세호;고대권
    • 한국자동차공학회논문집
    • /
    • 제13권5호
    • /
    • pp.188-194
    • /
    • 2005
  • The direct injection diesel engine is one of the most efficient thermal engines. For this reason DI diesel engines are widely used for heavy-duty applications. But the world is faced with very serious problems related to the air pollution due to the exhaust emissions of diesel engine. So, that is air pollution related to exhaust gas resulted from explosive combustion should be improved. Exhaust Gas Recirculation(EGR) is a proven method to reduce NOx emissions. In this study, the experiments were performed at various engine loads while the EGR rates were set from $0\%$ to $30\%.$ The emissions trade-off and combustion of diesel engine are investigated. The brake specific fuel consumption rate is very slightly fluctuated with EGR in the range of experimental conditions. The ignition delay increased with increasing EGR rate. The maximum value of premixed combustion for the rate of heat release is increased with increasing EGR rate. NOx emissions are decreased with increasing EGR rate at high load and high speed. It was found that the exhaust emissions with the EGR system resulted in a very large reduction in oxides of nitrogen at the expense of higher smoke emissions.

하이브리드용 가솔린 엔진에서 최적 EGR적용 및 실린더간 편차에 따른 성능 및 배출가스 특성 분석 (Analysis of Performance and Emissions Characteristics on Gasoline Engine for Hybrid Vehicles with Optimum EGR Rate and the Cylinder Variation of EGR Rate)

  • 박철웅;최영;김창기
    • 한국자동차공학회논문집
    • /
    • 제17권1호
    • /
    • pp.87-95
    • /
    • 2009
  • EGR(Exhaust gas recirculation) provides an important contribution in achieving the development targets of low fuel consumption and low exhaust emission levels on gasoline engine for hybrid vehicles while allowing stoichiometric fuelling to be retained for applications using the three-way catalysts. However, the occurrence of excessive cyclic variation with high EGR normally prevents substantial fuel economy improvements from being achieved in practice. Therefore, the optimum EGR rate in gasoline engine for hybrid vehicles should be carefully determined in order to achieve low fuel consumption and low exhaust emission. In this study, 2 liters gasoline engine with E-EGR system was used to investigate the effects of EGR with optimum EGR rate on fuel economy, combustion stability, engine performance and exhaust emissions. As the engine load becomes higher, the optimum EGR rate tends to increase. The increase in engine load and reduction in engine speed make the fuel consumption better. The fuel consumption was improved by maximum 5.5% at low speed, high load operating condition. As the simulated EGR variation on a cylinder is increased, due to the increase in cyclic variation, the fuel consumption and emissions characteristics were deteriorated simultaneously. To achieve combustion stability without a penalty in fuel consumption and emissions, the cylinder-to-cylinder variations must be maintained under 10%.

커먼레일식 디젤기관의 부분 예혼합 분사시기가 연소 및 배기특성에 미치는 영향 (The Effects of Partially Premixed Pilot Injection Timing on the Combustion and Emission Characteristics in a Common Rail Diesel Engine)

  • 윤삼기;최낙정
    • 동력기계공학회지
    • /
    • 제17권6호
    • /
    • pp.18-24
    • /
    • 2013
  • An experimental study was performed to investigate the characteristics of combustion pressure and exhaust emissions when the pilot injection timing and EGR rate were changed in a CRDI 4-cylinder diesel engine. The pilot injection timing and EGR rate have a significant impact on the combustion and emission characteristics of diesel engine. In this study, the pilot injection timing and EGR rate variation were conducted to 2000rpm of engine speed with torque 50Nm. Combustion pressure and heat release rate were decreased under high EGR rate conditions but increased under the pilot injection timing $20^{\circ}$(BTDC). IMEP and the maximum pressure in cylinder(Pmax) were decreased under the same injection timing with the increase of EGR rate. The NOx emission was decreased with increasing the EGR rate. On the other hand, in the same injection timing conditions, CO, HC, $CO_2$ emissions were increased with increasing the EGR rate.

바이오디젤 혼합 연료에 커먼레일 디젤기관에서 예비 분사시기가 연소 및 배기 특성에 미치는 영향 (Effects of pilot injection timing on the Combustion and Emission Characteristics in a Common Rail Diesel Engine with Bio-diesel blended fuel)

  • 윤삼기;최낙정
    • 한국산학기술학회논문지
    • /
    • 제15권5호
    • /
    • pp.2573-2578
    • /
    • 2014
  • 본 연구는 4실린더 커먼레일 디젤 기관에서 바이오 디젤 혼합 연료를 사용하여 예비 분사시기와 EGR율을 변화시켰을 때 연소 압력과 배기 특성에 미치는 영향을 조사하기 위하여 실험을 수행하였다. 예비 분사 시기와 EGR율은 디젤 기관의 연소 및 배기 배출 특성에 큰 영향을 미친다. 본 연구에서는 일반적으로 많이 사용되고 있는 기관 회전 속도 2,000rpm에서 바이오 디젤 혼합율 20%의 연료를 사용하여 예비 분사 시기와 EGR율에 다양하게 변화를 주어 실험을 하였다. 실험결과, 도시 평균 유효 압력은 예비 분사 시기가 상사점전 BTDC $10^{\circ}$에서 가장 높았으며, 연소 압력과 열 발생율은 동일 예비 분사 시기에서 EGR율에 비례하여 감소하였다. NOx배 출량은 예비 분사시기에 관계없이 EGR율이 증가할수록 큰 폭으로 감소하였으며, 매연(Soot)은 예비 분사 시기 BTDC $20^{\circ}$에서 가장 적게 배출되었다.

하이브리드용 가솔린 엔진에서 On/Off 방식 EGR적용 및 최적 EGR 율에 관한 연구 (A Study on Application of On/Off Type EGR and Optimal EGR Rate for Gasoline-Hybrid Engine)

  • 박철웅;최영;김창기
    • 한국자동차공학회논문집
    • /
    • 제16권4호
    • /
    • pp.143-150
    • /
    • 2008
  • EGR(exhaust gas recirculation) is an attractive means of improving the fuel economy of spark ignition engines, as it offers the benefits of charge dilution (lower pumping and cooling losses) while allowing stoichiometric fuelling to be retained for applications using the three-way catalysts. However, the occurrence of excessive cyclic variation with high EGR normally prevents substantial fuel economy improvements from being achieved in practice. Therefore, the optimum EGR rate in Gasoline-Hybrid engine should be carefully determined in order to achieve low fuel consumption and low exhaust emission. In this study, 2 liters gasoline engine with E-EGR system was used to investigate the effects of EGR on fuel economy, combustion stability, engine performance and exhaust emissions. EGR tolerance with load variation was found to be more sensitive than with rpm variation. With optimal EGR rates, the fuel consumption was improved by 5.5% while a combustion stability was guaranteed.

Cooled EGR 시스템의 EGR률과 연료분사시기가 소형 디젤엔진의 배기 배출물 특성에 미치는 영향에 관한 연구 (Effect of EGR Rate and Injection Timing on the Characteristics of Exhaust Emissions in Light-duty Diesel Engine)

  • 공호정;황인구;고아현;명차리;박심수;임창식
    • 한국자동차공학회논문집
    • /
    • 제20권3호
    • /
    • pp.7-12
    • /
    • 2012
  • Cooled EGR system is widely used to reduce NOx emissions in diesel engine. But when EGR rate was increased, combustion stability was worsened and PM level was increased. So determining optimized control point of EGR rate is important. In order to determine this point, it is important to figure out the effect of EGR system on the exhaust emissions. In this research, NOx and PM emissions were analyzed with various coolant temperature supplied to the EGR cooler at several positions such as downstream of turbocharger, upstream and downstream of DPF. Effects of some variables such as EGR rate, hot / cooled EGR and change of injection timing were estimated. And $CO_2$ emissions were measured at exhaust and intake manifold to calculate EGR rate at each engine operating condition. Also combustion analysis was performed in each engine operating conditions. In the result of this study, there was trade-off between NOx emissions and PM emissions. When EGR rate was increased, combustion pressure was decreased and COV of IMEP was increased.

스크러버형 EGR시스템 디젤기관의 피스톤 및 피스톤링 마모에 미치는 재순환 배기의 영향에 관한 연구 (A Study on Effect of Recirculated Exhaust Gas upon Wears of Piston and Piston Rings in Diesel Engines with Scrubber EGR System)

  • 배명환;하정호
    • 한국자동차공학회논문집
    • /
    • 제8권6호
    • /
    • pp.79-86
    • /
    • 2000
  • The effects of recirculated exhaust gas on the wears of piston and piston rings were investigated by the experiment with a two-cylinder, four cycle, indirect injection diesel engine operating at an engine load of 75% and an engine speed of 1600 rpm. For the purpose of comparison between the wear rates of two cylinders with and without EGR, the recirculated exhaust gas was sucked into one of two cylinders after the soot contenets in exhaust emissions were removed by an intentionally designed cylinder-type scrubber equipped with 6 water injectors(A water injector has 144 nozzles of 1.0 mm diameter), while only the fresh air was inhaled into the other cylinder. These experiments were carried out on the fuel injection timing fixed at 15.3$^{\circ}$ BTDC. It was found that the wear rate of piston skirt with EGR increased a little bit, but the piston head diameter increased, rather than decreased, owing to soot adhesion and erosion wear, and especially larger with EGR, and that the wear rates of the top and second piston ring(compression ring)thickness with EGR were more than twice the wear rate of top ring in case of no EGR, but the wear rate of oil rings thickness without EGR increased greater than that with EGR.

  • PDF

EGR관 형상이 가변형상 과급기를 장착한 디젤엔진의 EGR 특성에 미치는 영향 (The Effect of EGR Pipe Configuration on EGR Characteristics of Diesel Engine with Variable Geometry Turbocharger)

  • 정수진;정재우;강정호;강우
    • 한국자동차공학회논문집
    • /
    • 제15권2호
    • /
    • pp.65-73
    • /
    • 2007
  • The use of an Exhaust Gas Recirculation(EGR) for a diesel engine with variable geometry turbocharger(VGT) has confronted how to obtain the amount of EGR for NOx reduction requirement at wide operating range and less side effect. Through a combined effort of modeling(wave action simulation) and experiment, an investigation into the effect of EGR area ratio and pipe length on EGR characteristics of common rail diesel engine with VGT has been performed. For accurate computation, calibration of constants involved in empirical and semi-empirical correlations has been performed at a specific operating point, before of its use for engine simulation. From the results of this study, it was found that EGR rate is sharply increased with increasing EGR area ratio until area ratio of 0.3. However, the effect of EGR area ratio on EGR rate is negligible beyond this criteria. This study also investigates the effect of EGR pipe length on a EGR amount and pulsating flow characteristics at EGR junction. The results showed that the longer EGR pipe length, the lower EGR amount was achieved due to the flow loss resulting in lower amplitude of pressure wave.

단기통 엔진에서 대유량 EGR을 통한 저온 연소 특성 (Characteristics of Low Temperature Combustion in Single Cylinder Engine by High EGR Rate)

  • 조상현;오광철;이춘범
    • 한국자동차공학회논문집
    • /
    • 제17권4호
    • /
    • pp.79-85
    • /
    • 2009
  • Low temperature combustion regime for the simultaneous reduction of nitrogen oxides ($NO_x$) and paticulate matter (PM) is demonstrated in single cylinder engine at various operating parameters, such as EGR rate, injection timing, EGR temperature, amount of fuel and swirl rate. Low temperature combustion is accomplished by high exhaust gas recirculation (EGR) rate in this study. Generally, the emission of $NO_x$ almost completely disappears and PM significantly increases in the first decreasing regime of oxygen concentration but after peaking about 10~12% oxygen concentration, PM then decreases regardless of fuel injection quantity. Low temperature combustion regime was extended by low EGR temperature, high injection pressure and low amount of fuel.

EGR율 변화에 대한 액상 LPG분사 엔진의 운전 및 배출가스특성 (Performance and Emission Characteristics of Liquid-Phase LPG Injection Engine with Different EGR Rate)

  • 염기태;우영민;장진영;박용국;배충식
    • 한국자동차공학회논문집
    • /
    • 제11권5호
    • /
    • pp.7-14
    • /
    • 2003
  • Exhaust Gas Recirculation (EGR) system is used to reduce NOx emission, to improve fuel economy, and to suppress knock since it offers the benefits of the inlet charge dilution. The effects of EGR was investigated on the performance and emission to reduce exhaust thermal load with a single cylinder liquid-phase LPG injection engine, in a wide range of EGR rate, engine conditions and LPG proportions. As EGR rate was increased, NOx was reduced while HC was increased. Pumping loss reduction by EGR improved bsfc and increased EGR lowered exhaust gas temperature. And, LPG proportions were made a difference on the performance and emission characteristics.