• Title/Summary/Keyword: EGR 쿨러

Search Result 12, Processing Time 0.023 seconds

An Experimental Study on the Heat Exchange Performance at Various EGR Cooler Types (EGR 쿨러 Type에 따른 열교환성능에 관한 실험적 연구)

  • Shon, Jungwook;Woo, Seungchul;Park, Jongwook;Chun, Taesoo;Lee, Kihyung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.23 no.6
    • /
    • pp.608-614
    • /
    • 2015
  • Nitrogen oxide(NOx) emission reductions are required to meet the strict emission regulations for environmental protection. Most of the Exhaust Gas Recirculation(EGR) system applied to a diesel engine can relatively decrease the NOx at a low cost, but it has a disadvantage in that the PM generation is promoted due to the hot intake air temperature. Thus, high heat exchange efficiency of the EGR cooler is required for an effective removal of NOx. In this study, heat exchange efficiency for various types of heat exchangers used in EGR cooler was measured under same conditions, and determined best heat exchange performance shape depending on type of heat exchanger.

Performance Design of Aluminum EGR Cooler Consisting of Extruded Tubes for LPL EGR System (LPL EGR 시스템용 압출 튜브 구조의 알루미늄 EGR 쿨러 성능 설계)

  • Heo, Hyungseok;Bae, Sukjung;Kang, Taegu;Lee, Junyong;Seo, Hyeongjun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.25 no.1
    • /
    • pp.42-50
    • /
    • 2017
  • A study has been conducted to develop an aluminum EGR cooler for the LPL EGR system of a diesel engine. Aluminum has a much lower density and thermal conductivity that is about 12 times or more than that of stainless steel, so it is advantageous for use in an EGR cooler for weight reduction and cooling performance effects. A design process has been carried out to ensure heat dissipation performance in a restricted space to investigate the geometric parameters and satisfy the requirements for pressure drops at both fluid sides. The tubes of exhaust gas have been designed as extruded tubes. An aluminum EGR cooler consisting of extruded tubes entails a simpler manufacturing process compared to a stainless steel EGR cooler with conventional heat transfer fins. A prototype has been manufactured from the final model selected through the design process. The performance of the aluminum EGR cooler was evaluated and compared with that of the conventional one. The weight of the aluminum EGR cooler is reduced by 22.9%, while performance is significantly improved.

Evaluation of Catalyst Assisted EGR Cooler System for EGR Cooler Fouling Reduction (EGR Cooler Fouling 저감을 위한 촉매 장착 EGR Cooler System 평가)

  • Hong, Kwang-Seok;Park, Jung-Soo;Lee, Kyo-Seung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.5
    • /
    • pp.76-81
    • /
    • 2011
  • Exhaust gas recirculation is the well-known and widely used NOx reduction technology for diesel engines. More effective EGR cooler has been developed and applied to diesel engines to meet the reinforced emission regulation. However, the contaminated EGR cooler by diesel exhaust gas reduces the performance of the engine and NOx reduction rate. The buildup of deposits in EGR coolers cause significant degradation in heat transfer performance, often on the order of 20~30%. Deposits also increase pressure drop across coolers and thus may degrade engine efficiency under some operation conditions. In this study, as a solution for this problem, DOC assisted EGR cooler is designed and then investigated to reduce fouling and its impact on cooler performance. A single channel EGR cooler fouling test apparatus and soot particle generator were developed to represent the real EGR cooler and exhaust gas of diesel engine. EGR cooler effectiveness of the case with catalyst of pt 30g/ft3 decreased just up to 5%. This value was 45% less compared to the case without catalyst which decreased up to 9% after 10hours experiments.

The Effect of Cooling Efficiency on Fouling by EGR Cooler Internal Shape (EGR Cooler 내부 형상에 따른 Fouling이 냉각 성능에 미치는 영향)

  • Nam, Youn-Woo;Oh, Kwang-Chul;Lee, Chun-Hwan;Lee, Chun-Beom;Lee, Won-Nam
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.1
    • /
    • pp.101-108
    • /
    • 2011
  • Understanding the exhaust gas recirculation (EGR) cooler fouling in diesel engine is important factor in the durability characteristic of a EGR system. We develope a test rig and PM feeder using carbon black to examine the effect of fouling on EGR cooler devices those were consisted of flat and shell & tube type. The EGR cooler fouling process is a complex interaction involving heat exchanger shape, boundary condition, constitutes, chemistry and operating mode. As the soot deposited to EGR cooler, these formed a thin deposit layer that was less heat exchange than the fresh status of tube enclosing the exhaust gas, resulting in lower heat exchange effectiveness in both type coolers. But these deposits caused different results in pressure drop, it is increased in flat type, but decreased in Shell & tube type of EGR cooler. A cause was estimated from a change of the flow structure and a decrease of contact area as the EGR cooler fouling.

A Study on Development of Oval Type High Efficient EGR Cooler (고효율 Oval형 EGR 쿨러 개발에 관한 연구)

  • Lee, Joon;Moon, Jeon-Il;Han, Chang-Suk
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.1
    • /
    • pp.89-94
    • /
    • 2011
  • The EGR system is one of important components in diesel engine. The regulation on NOx emission has been tightened up. Therefore, it is a significant issue to develop and commercialize the high efficient EGR cooler system that reduces NOx emission in DI diesel engine. Key performance factor of the EGR cooler system is how to properly design both wavy cooling fins and gas tubes. This paper proposes a high efficient EGR cooler that has been upgraded with both the optimized wavy cooling fins and the improved shape of structure. The evaluation of the heat exchange efficiency, outlet temperature, and gas pressure drop of the EGR cooler is performed with the prototype of the proposed EGR cooler. The result shows a good solution and will be implemented to the model of a clean diesel engine being developed for both domestic and overseas market.

Evaluation of Structural Integrity and Heat Exchange Efficiency for Dimpled Tube Type EGR Cooler (딤플 튜브형 EGR Cooler 구조건전성 및 열효율 평가)

  • Seo, Young-Ho;Lee, Hyun-Min;Park, Jung-Won;Ku, Tae-Wan;Kim, Jeong;Kang, Beom-Soo
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.554-559
    • /
    • 2008
  • Most of vehicle manufacturers have applied exhaust gas recirculation (EGR) system to the development of diesel engines in order to obtain the high thermal efficiency without $NO_X$ and Particulate Matter (PM) emitted from the engine. EGR system, which reflow a cooled exhaust gas from vehicles burning diesel as fuel to a combustion chamber of engine, has been used to solve this problem. In order to confirm the safety of the EGR system, finite element analysis was carried out. The safety of EGR system against temperature variation in the shell and tubes was evaluated through the thermal and structural analysis, and the modal analysis using ANSYS was also performed. Finally, the performance of EGR system was verified through the experiment and numerical simulation using effectiveness-NTU method. Program for the estimation of the heat exchange efficiency of the EGR system with regard to the dimpled tube shape was developed.

  • PDF

A Study on Heat Exchange Efficiency of EGR Cooler for Diesel Engine to Meet Euro-5 Emission Regulation (Euro-5 대응 디젤엔진용 EGR 쿨러의 열교환 효율 연구)

  • Lee, Joon;Han, Chang-Suk
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.3
    • /
    • pp.183-188
    • /
    • 2007
  • Recently, diesel engine has been frequently applied to RV, SUV and light duty truck due to the good fuel economy and high thermal efficiency. $NO_x$ and PM, environmental pollution materials are basically produced in diesel combustion process. The most important target in diesel engine research is the development of system to reduce the emissions of $NO_x$ and PM. Cooled EGR system is an effective method for the reduction of $NO_x$ emission and PM emission from a diesel engine and EGR cooler is the key component of the system. This study investigates the EGR cooler of oval gas tubes compared with the EGR cooler of shell & tubes to verify the heat exchange efficiency of cooler by means of engine dynamometer tests, rig performance tests and numerical analyses.

A Study on Heat Exchange Efficiency of EGR Cooler for Diesel Hybrid (하이브리드 디젤엔진용 EGR 쿨러의 열교환 효율 연구)

  • Lee, Joon;Moon, Jeon-Il;Kim, Yeon-Hee
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.2
    • /
    • pp.159-164
    • /
    • 2009
  • Cooled EGR system is an effective method for the reduction of $NO_x$ emission and PM emission from a diesel engine. Proper choice of wavy cooling fins and gas tubes is a key factor of cooled EGR system. As a part of solutions for energy crisis and environmental problems, hybrid vehicles mounted with diesel engines are under development globally. This study investigates the cooled EGR systems for hybrid diesel engine with the specifications of both optimized wavy cooling fins and improved shape of structure to verify the heat exchange efficiency, outlet temperature and gas pressure drop of cooler by means of numerical analyses and rig performance tests. The output of this study will be applied to a 2.0L hybrid diesel engine which is being developed for domestic and overseas market.

Performance Characteristics of an Electronically Controlled EGR Valve for Diesel Engines (디젤엔진용 전자식 EGR 밸브의 성능 특성)

  • Chung, Jin-Eun;Chin, Young-Wook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.2
    • /
    • pp.185-188
    • /
    • 2007
  • Lately, the modulated EGR system that includes EGR valve and EGR cooler is being installed in diesel engines fur the purpose of the simultaneous reduction of NOx and PM. In this study. we designed and constructed a test bench for the performance evaluation of the modulated EGR system, and tested an electronically controlled EGR valve for 2.0 L diesel engines. The performance of the EGR valve was evaluated in terms of the valve lift behavior. the valve opening/closing response, and the mass flow rate through the valve. The valve lift with respect to the duty ratio of PWM signal was non-linear, and followed a different path fur valve opening and closing, that is, hysteresis. The valve opening response was concluded satisfactory falling within the usual standard response time. For the duty ratio of 40 to 60%, the mass flow rate through the valve was observed to depend on the pressure difference across the valve as well as the duty ratio, while it solely depended on the pressure difference fur the duty ratio above 60%.

  • PDF

NOx Emission Characteristic according to Aging of EGR Cooler in Non-Road Diesel Engine (EGR 적용 비도로 엔진의 쿨러 열화에 따른 질소산화물 배출특성)

  • Lee, Kyoung-Bok;Oh, Kwang-Chul
    • Journal of Power System Engineering
    • /
    • v.20 no.5
    • /
    • pp.37-45
    • /
    • 2016
  • Exhaust gas recirculation has the advantage of being low-cost and easy to control of NOx emission. Therefore, it is most generally used to reduce NOx emission according to strengthen regulation. In the case of a non-road engine, such as the agricultural engine, since it mainly operate a middle or high-load state, NOx emission is decreased in accordance with the mapping range of the EGR rate, but results in an increase in the particulate matter which is caused to deposit and fouling problem of the EGR system. This problem has become an important issue for maintaining the performance of the engine, as well as emission performance. This study had examined the effects of cooler aging on the performance of heat transfer efficiency and NOx emission in non-road diesel engine. As a result of the EGR cooler aging during 200 hours engine operation, the cooling performance decreased about 25% compared with that of fresh cooler and the NOx emission increased about 14.6% on NRSC(non-road steady cycle) and 20% on NRTC(non-road transient cycle) compared with that of fresh cooler respectively.