• Title/Summary/Keyword: EFFICIENCY

Search Result 60,586, Processing Time 0.09 seconds

A Study on the Reconfiguration Effect of Busan Port Operator in Logistics Environment (물류환경변화에 따른 부산항 운영사 재구성효과에 관한 실증연구)

  • Park, Ho-Chul;Lee, Sung-Yhun;Ahn, Ki-Myung
    • Journal of Navigation and Port Research
    • /
    • v.42 no.6
    • /
    • pp.507-517
    • /
    • 2018
  • The probability of T/S cargo volume to decrease is the most notable problem associated with inappropriate mix of terminal operators in Busan port. Other problems include, the deterioration of the national carriers' competitiveness from non-operation of own terminal, excessively high proportion of financial operators in the engagement of operation which may result in their passiveness in timely investment, additional cost burden to carriers' in the handling inter-terminal T/S cargo transportation and inefficiency in terminal operation by the multiplicity of operators proved to be same recognized as so through the analysis. Therefore, in order to provide solutions for the problems and to strengthen Busan port's competitiveness, this research suggests the restructuring of operators mix as follows. To achieve sustainable growth of T/S cargo, global carriers' participation in terminal operation should be of utmost priority. To enhance the operational efficiency, the operators should be integrated. Similarly, the integration of operators will play a key role in verifying that national carriers' own terminal operation is an important factor in raising its competence. Finally, BPA's active engagement in the entire operation of port is also critical in public-oriented operation of the port. Whereas in the interactive analysis by taking the merits of Busan port into consideraion, global carrier's participation in operation, integration of operators and BPA's engagement in operation proved to contribute to the increase of T/S cargo and strengthening of operational efficiencies of Busan port.

Particulate Matter and CO2 Improvement Effects by Vegetation-based Bio-filters and the Indoor Comfort Index Analysis (식생기반 바이오필터의 미세먼지, 이산화탄소 개선효과와 실내쾌적지수 분석)

  • Kim, Tae-Han;Choi, Boo-Hun;Choi, Na-Hyun;Jang, Eun-Suk
    • Korean Journal of Environmental Agriculture
    • /
    • v.37 no.4
    • /
    • pp.268-276
    • /
    • 2018
  • BACKGROUND: In the month of January 2018, fine dust alerts and warnings were issued 36 times for $PM_{10}$ and 81 times for PM2.5. Air quality is becoming a serious issue nation-wide. Although interest in air-purifying plants is growing due to the controversy over the risk of chemical substances of regular air-purifying solutions, industrial spread of the plants has been limited due to their efficiency in air-conditioning perspective. METHODS AND RESULTS: This study aims to propose a vegetation-based bio-filter system that can assure total indoor air volume for the efficient application of air-purifying plants. In order to evaluate the quantitative performance of the system, time-series analysis was conducted on air-conditioning performance, indoor air quality, and comfort index improvement effects in a lecture room-style laboratory with 16 persons present in the room. The system provided 4.24 ACH ventilation rate and reduced indoor temperature by $1.6^{\circ}C$ and black bulb temperature by $1.0^{\circ}C$. Relative humidity increased by 24.4% and deteriorated comfort index. However, this seemed to be offset by turbulent flow created from the operation of air blowers. While $PM_{10}$ was reduced by 39.5% to $22.11{\mu}g/m^3$, $CO_2$ increased up to 1,329ppm. It is interpreted that released $CO_2$ could not be processed because light compensation point was not reached. As for the indoor comfort index, PMV was reduced by 83.6 % and PPD was reduced by 47.0% on average, indicating that indoor space in a comfort range could be created by operating vegetation-based bio-filters. CONCLUSION: The study confirmed that the vegetation-based bio-filter system is effective in lowering indoor temperature and $PM_{10}$ and has positive effects on creating comfortable indoor space in terms of PMV and PPD.

Assessment of an Optimum Biochar Application Rate for Tomato(Solanum lycopersicum L.) Cultivation (토마토 재배를 위한 바이오차 최적시용 비율 평가)

  • Park, Do-Gyun;Hong, Seung-Gil;Jang, Eunsuk;Shin, Joung-Du
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.27 no.1
    • /
    • pp.39-48
    • /
    • 2019
  • Objective of this study was to evaluate an optimum biochar application rate and estimate the carbon sequestration based on the soil chemical properties and growth responses for biochar application during tomatoes cultivation. The treatments consisted of control as recommended application rates of fertilizers, 0.01%, 0.03%, 0.05%, and 0.07% of biochar application(w/w, biochar:soil). For effects of soil chemical properties, the $NO_3-N$contents in the soil were peaked at 9 days after transplanting. But there was not significant difference(p>0.05) among the treatments during cultivation periods. However, $NH_4-N$ contents in the biochar treatment were lower than the control until 14 days of transplanting. $P_2O_5$ contents in the biochar treatments were lower than that of the control until 19 days after transplanting except 0.01% of biochar application plot. $K_2O$ contents in soils treated with 0.01% and 0.03% of biochar were higher until 6 days after transplanting than that in the control. For N use efficiency of biochar application, it was observed that the 0.05% biochar application plot was highest among the treatments. The highest carbon sequestration was estimated at $2.83mg\;kg^{-1}$ for 0.03% of biochar application. However, it is considered that the optimum biochar application rate was 0.05% for tomato cultivation, considering the growth characteristics and yield components.

Water shortage assessment by applying future climate change for boryeong dam using SWAT (SWAT을 이용한 기후변화에 따른 보령댐의 물부족 평가)

  • Kim, Won Jin;Jung, Chung Gil;Kim, Jin Uk;Kim, Seong Joon
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.12
    • /
    • pp.1195-1205
    • /
    • 2018
  • In the study, the water shortage of Boryeong Dam watershed ($163.6km^2$) was evaluated under future climate change scenario. The Soil and Water Assessment Tool (SWAT) was used considering future dam release derived from multiple linear regression (MLR) analysis. The SWAT was calibrated and verified by using daily observed dam inflow and storage for 12 years (2005 to 2016) with average Nash-Sutcliffe efficiency of 0.59 and 0.91 respectively. The monthly dam release by 12 years MLR showed coefficient of determination ($R^2$) of above 0.57. Among the 27 RCP 4.5 scenarios and 26 RCP 8.5 scenarios of GCM (General Circulation Model), the RCP 8.5 BCC-CSM1-1-M scenario was selected as future extreme drought scenario by analyzing SPI severity, duration, and the longest dry period. The scenario showed -23.6% change of yearly dam storage, and big changes of -34.0% and -24.1% for spring and winter dam storage during 2037~2047 period comparing with 2007~2016 period. Based on Runs theory of analyzing severity and magnitude, the future frequency of 5 to 10 years increased from 3 in 2007~2016 to 5 in 2037~2046 period. When considering the future shortened water shortage return period and the big decreases of winter and spring dam storage, a new dam operation rule from autumn is necessary for future possible water shortage condition.

Evaluation of Land Use Change Impact on Hydrology and Water Quality Health in Geum River Basin (금강유역의 토지이용 변화가 수문·수질 건전성에 미치는 영향 평가)

  • LEE, Ji-Wan;PARK, Jong-Yoon;JUNG, Chung-Gil;KIM, Seong-Joon
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.22 no.2
    • /
    • pp.82-96
    • /
    • 2019
  • This study evaluated the status of watershed health in Geum River Basin by SWAT (Soil and Water Assessment Tool) hydrology and water quality. The watershed healthiness from watershed hydrology and stream water quality was calculated using multivariate normal distribution from 0(poor) to 1(good). Before evaluation of watershed healthiness, the SWAT calibration for 11 years(2005~2015) of streamflow(Q) at 5 locations with 0.50~0.77 average Nash-Sutcliffe model efficiency and suspended solid (SS), total nitrogen(T-N), and total phosphorus(T-P) at 3 locations with 0.67~0.94, 0.59~0.79, and 0.61~0.79 determination coefficient($R^2$) respectively. For 24 years (1985~2008) the spatiotemporal change of watershed healthiness was analyzed with calibarted SWAT and 5 land use data of 1985, 1990, 1995, 2000, and 2008. The 2008 SWAT results showed that the surface runoff increased by 40.6%, soil moisture and baseflow decreased by 6.8% and 3.0% respectively compared to 1985 reference year. The stream water quality of SS, T-N, and T-P increased by 29.2%, 9.3%, and 16.7% respectively by land development and agricultural activity. Based on the 1985 year land use condition. the 2008 watershed healthiness of hydrology and stream water quality decreased from 1 to 0.94 and 0.69 respectively. The results of this study be able to detect changes in watershed environment due to human activity compared to past natural conditions.

A Comparative Review on Civil Money Penalties in Aviation Law (항공 과징금 제도의 비교법적 검토)

  • Lee, Chang-Jae
    • The Korean Journal of Air & Space Law and Policy
    • /
    • v.34 no.1
    • /
    • pp.3-38
    • /
    • 2019
  • In 1984, Congress enacted a new measure of administrative sanctions which is a civil money penalty program for violations of Aviation Act and its implementing regulations. This civil money penalty system has been in operations in lieu of suspending or revoking certificates issued by Korean government, Ministry of Land, Infrastructure, and Transport. According to the rules of Aviation Business Act or Aviation Safety Act, where the Minister of Land, Infrastructure and Transport should order an air carrier to suspend operation because of her violation under certain rules, in which case the suspension of operation is likely to cause serious inconvenience to consumers of air transport services or to harm public interest, the Minister of the department may impose an administrative monetary penalty in lieu of the suspension of operation. In this regard, airline related civil money penalties are somewhat different from those of fair trade, which is the origin of the money penalties system in Korea. Civil money penalties in the field of fair trade are imposed on executive duty violations that undermine the value of the market economy order, and focus on reimbursement of profits due to violations and compensation for unfair spending by consumers. However, in the aviation sector, breach of duty by a business operator does not simply cause the property loss of the public, but it has a direct impact on life or property of the public. In this respect, aviation penalties are more likely to be administrative sanctions or punitive measures than refunds of unfair benefits, compared to penalties in the field of fair trade. In general, civil money penalties have been highly preferred as administrative sanctions because they are subject to investigations by administrative experts and thus, efficiency can be ensured and execution is quicker than judicial procedures. Moreover, in Korea, because punitive civil damages cannot awarded by the courts, the imposition of civil money penalties is recognized as a means of realizing social justice by recognizing the legal feelings of the people. However, civil money penalties are administrative sanctions, and in terms of effectiveness, they are similar to criminal fines, which are a form of punishment. Inadequate legislation and operation of penalties imposition may cause damage to the value of Constitution. Under the above recognition, this paper has been described for the purpose of identifying the present status of the civil money penalties imposition system and operating status in the area of air transport under the laws and regulations in Korea. Especially, this paper was focused on exploring the problem and improvement direction of Korean system through the comparative study with foreign laws and regulations.

Combustion Characteristics of Cow Manure Pellet as a Solid Fuel Source (고체연료원으로서의 우분 펠릿 연소특성)

  • Jeong, Kwang-Hwa;Lee, Dong-jun;Lee, Dong-Hyun;Lee, Sung-Hyoun
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.27 no.2
    • /
    • pp.31-40
    • /
    • 2019
  • In Korea, 51,013 thousand tons of livestock manure was generated in 2018. A total of 46,530 thousand tons, which is 91.2% of the total amount of livestock manure generated, was treated by composting(40,647 thousand tons) or liquid fertilization(5,884 thousand tons) method. At present, the policy of livestock manure treatment in Korea is to make livestock manure into organic fertilizer(compost, liquid fertilizer) and then to applicate it on agricultural land. And this policy is very effective in terms of livestock manure treatment and nutrient recycling. However, considering the steadily declining farmland area for decades, the use of livestock manure compost could be limited in the future. There is also concern that local nutrient overloading, nutrient management regulation, and restrictions on the number of livestock may become serious problem for livestock manure treatment. In addition, there are some opinions that nutrient derived from livestock manure may flow into tributaries of major dams. In recent years, there has been a suspicion that fine dust may be generated from livestock manure compost. In recent years, the use of livestock manure fertilizer has been rapidly increasing, there is a growing demand of the development of new technologies for livestock manure treatment. Especially, cow excretes a larger amount of manure than other livestock, so that the efficiency of development of new technology for cow manure treatment will be high. Therefore, in this study, the combustion characteristics of cow manure pellet were investigated in order to analyzed whether cow manure could be used as source of solid fuel. During the combustion test, the weight loss of the cow manure pellet began to increase when the temperature of the combustion chamber reached $300^{\circ}C$. The ratio of $H_2$, $CH_4$, CO in the pyrolysis gas produced in the pyrolysis process of cow manure pellet were 6.65~11.62%, 0.58~1.54 and 11.47~14.07%, respectively.

A Study on the Verification of an Indoor Test of a Portable Penetration Meter Using the Cone Penetration Test Method (자유낙하 콘관입시험법을 활용한 휴대용 다짐도 측정기의 실내시험을 통한 검증 연구)

  • Park, Geoun Hyun;Yang, An Seung
    • Journal of the Korean GEO-environmental Society
    • /
    • v.20 no.2
    • /
    • pp.41-48
    • /
    • 2019
  • Soil compaction is one of the most important activities in the area of civil works, including road construction, airport construction, port construction and backfilling construction of structures. Soil compaction, particularly in road construction, can be categorized into subgrade compaction and roadbed compaction, and is significant work that when done poorly can serve as a factor causing poor construction due to a lack of compaction. Currently, there are many different types of compaction tests, and the plate bearing test and the unit weight of soil test based on the sand cone method are commonly used to measure the degree of compaction, but many other methods are under development as it is difficult to secure economic efficiency. For the purpose of this research, a portable penetration meter called the Free-Fall Penetration Test (FFPT) was developed and manufactured. In this study, a homogeneous sample was obtained from the construction site and soil was classified through a sieve analysis test in order to perform grain size analysis and a specific gravity test for an indoor test. The principle of FFPT is that the penetration needle installed at the tip of an object put into free fall using gravity is used to measure the depth of penetration into the road surface after subgrade or roadbed compaction has been completed; the degree of compaction is obtained through the unit weight of soil test according to the sand cone method and the relationship between the degree of compaction and the depth of the penetration needle is verified. The maximum allowable grain size of soil is 2.36 mm. For $A_1$ compaction, a trend line was developed using the result of the test performed from a drop height of 10 cm, and coefficient of determination of the trend line was $R^2=0.8677$, while for $D_2$ compaction, coefficient of determination of the trend line was $R^2=0.9815$ when testing at a drop height of 20 cm. Free fall test was carried out with the drop height adjusted from 10 cm to 50 cm at increments of 10 cm. This study intends to compare and analyze the correlation between the degree of compaction obtained from the unit weight of soil test based on the sand cone method and the depth of penetration of the penetration needle obtained from the FFPT meter. As such, it is expected that a portable penetration tester will make it easy to test the degree of compaction at many construction sites, and will lead to a reduction in time, equipment, and manpower which are the disadvantages of the current degree of compaction test, ultimately contributing to accurate and simple measurements of the degree of compaction as well as greater economic feasibility.

Analysis of CO2 Emission Pattern by Use in Residential Sector (가정 부문 이산화탄소 배출량 추이 분석)

  • Yoon, So Won;Lim, Eun Hyouk;Lee, Gyoung Mi;Hong, You Deok
    • Journal of Climate Change Research
    • /
    • v.1 no.3
    • /
    • pp.189-203
    • /
    • 2010
  • The objective of this study is the estimate of $CO_2$ emissions by the energy consumption of functional technology introduced by classifying energy use in households according to functions as well as energy resources. This study also intends to provide the practical basis data in order to establish specific alternatives for GHG mitigation in residential sector with examining the cause analysis affecting $CO_2$ emission increases from 1995 to 2007. The results of this study show a 6.6% increase in the total $CO_2$ from 60,636 thousand tons in 1995 to 64,611 thousand tons in 2007 by using energy in residential sector. Heating is the greatest $CO_2$ emission sector by use, followed electric appliances, cooking, lighting and cooling. Heating sector shows 56.6% reductions from 71.5% in 1995 and as do cooling and electric home appliances, with a 2.4% increase from 0.6% and a 21.8% increase from 14.2% respectively. To analyze factors resulted in $CO_2$ emissions in residential sector, the relevant indicator change rate from 2005 to 2007 was examined. The results find that population, the number of household, housing areas, family patterns, and family income resulted in the $CO_2$ emissions increase in residential sector from 1995 to 2007. On the other hand, carbon intensity and energy intensity contribute to $CO_2$ reduction in residential sector with -2% and -38.7% respectively because of the energy conversion and the improvement of energy efficiency in electronic appliances. This study can be used as a reference when taken account of the reality and considered the introduction of highly effective measures to increase the possibility of mitigation potential in residential sector hereafter.

Manufacturing Fermented Rapeseed Meal Compost using Two Microbial Agents and the Effect of Their Application (유용 미생물 제제 이용 발효 유채박 비료 제조 및 시용 효과)

  • Lee, Ji-Eun;Park, Won;Kim, Kwang-Soo;Lee, Yong-Hwa;Kwon, Da-Eun;Moon, Youn-Ho;Cha, Young-Lok;Kang, Yong-Ku
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.64 no.1
    • /
    • pp.55-62
    • /
    • 2019
  • Rapeseed meal, which is a byproduct of rapeseed oil extraction, improves crop productivity by supplying nutrients to the soil. The present study aimed to manufacture fermented rapeseed meal compost using two effective microbial agents and evaluate their efficiency as fertilizer. To types of fermented rapeseed meal, manufactured using either a bio-carrier or microbial agent, showed no differences in pH, electrical conductivity (EC), and total nitrogen content. However, the contents of $NH_4-N$ and $NO_3-N$ as inorganic nitrogen were increased by 5.6 times and 1.5 times, respectively, after 5 d of fermentation. Rapeseed meal fermented for 5 d was applied to tomato a basal fertilizer and after eight weeks, the plant height increased in all fermented rapeseed treatments compared to that in the chemical fertilizer treatment, and also the quantum yield of photosystem II (PS II) showed the same trend. The total nitrogen content of tomato leaves treated with a microbial fermented rapeseed meal was twice as high as that of that treated with a chemical fertilizer. It was confirmed that the increase in the tomato height was an effect of the rapeseed meal containing inorganic nitrogen, which can easily be absorbed by plants. From these results, it is considered that fermented rapeseed meal manufactured with an effective microbial agent for 5 d showed the highest inorganic nutrient content and greatest growth enhancement in tomato.