• Title/Summary/Keyword: EFB

Search Result 46, Processing Time 0.023 seconds

Prevalence of honeybee (Apis mellifera) disease in Cheonan-Asan areas, Korea (천안·아산지역 양봉농가 꿀벌질병 감염률 조사)

  • Jeon, Dong-Min;Kim, Sun-Hee;Yook, Sim-Yong;Yeam, Nam-Hee;Do, Jin-Young;Song, Seo-Young;Heo, Eun-Jin;Sin, Chang-Ho
    • Korean Journal of Veterinary Service
    • /
    • v.36 no.2
    • /
    • pp.147-150
    • /
    • 2013
  • This study was carried out to investigate the prevalence of honeybee (Apis mellifera) disease in cheonan and asan area. From September to November in 2012, 33 samples were collected from 33 apiculture farms in the regions and reverse transcriptase-polymerase chain reaction (RT-PCR) and polymerase chain reaction (PCR) was conducted. Among 33 samples, prevalence rate was 42% in Sac Brood Virus (SBV), 52% in Nosema, 21% in American foulbrood (AFB), 70% in European foulbrood (EFB), 97% in Stonebrood, 3% in Chalkbrood. The result indicate that stonebrood was most prevalent disease in apiculture farms in cheonan and asan area.

The Effect of Torrefaction Process on the Structure and Combustion of Biomass Fuel (반탄화 과정이 바이오매스 연료의 구조 및 연소성에 미치는 영향)

  • JEONG, JONG-WON;KIM, GYEONG-MIN;ISWORO, YANUAR YUDHI;JEON, CHUNG-HWAN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.29 no.3
    • /
    • pp.280-291
    • /
    • 2018
  • Torrefaction is one of the methods to increase combustion calorific value and hydrophobicity of biomass. In this study, the effects of torrefaction on devolatilization, char reactivity and biomass structure were analyzed. Empty fruit bunch (EFB) and Kenaf biomass were used as fuels to be torrefied in the N2 environment at 200, 250 and $290^{\circ}C$. Devolatilization and char kinetics were analyzed by using TGA and biomass structure was investigated through petrography image. The reactivity showed different trends depending on the torrefaction temperature and biomass structure. The herbaceous biomass, Kenaf, was shown as high reactivity and thin wall structure. On the contrary, the woody biomass, EFB, had relatively low reactivity and thick wall structure.

Recovery of Catalyst Used in Oxalic Acid Pretreatment of Empty Fruit Bunch (EFB) and Bioethanol Production (팜 부산물 옥살산 전처리에 사용된 촉매 회수와 바이오에탄올 생산)

  • Jeong, So-Yeon;Lee, Hong-Joo;Lee, Jae-Won
    • Journal of the Korean Wood Science and Technology
    • /
    • v.41 no.6
    • /
    • pp.507-514
    • /
    • 2013
  • In this study, oxalic acid pretreatment of empty fruit bunch (EFB) was performed at different pretreatment temperatures. Also, we evaluated oxalic acid recovery from hydrolysate by electrodialysis. The fermentable sugar concentration in hydrolysate was high at more than $20g/{\ell}$, when pretreatment was carried out at $150^{\circ}C$. At the same time, ethanol production was $3.78g/{\ell}$ after 72 h which correspond to the ethanol yield of 0.21 g/g. On the other hydrolysate (160, $170^{\circ}C$), fermentable sugar was not consumed by Pichia stipitis during fermentation. Most of the oxalic acid was recovered and some of the fermentation inhibitors were removed by electrodialysis. For the electrodialysis treated hydrolysate, ethanol production was increased compared to the original hydrolysate. The highest ethanol production was $5.38g/{\ell}$ after 24 h which correspond to the yield of 0.33 g/g. The ethanol production by simultaneous saccharification and fermentation (SSF) under all pretreatment conditions was more than $15g/{\ell}$ after 96 h. The highest ethanol production was $20.54g/{\ell}$, when pretreatment was performed at $170^{\circ}C$. In particular, ethanol production was increased, when electrodialysis treated hydrolysate was used for SSF.

Effects of Biomass Gasification by Addition of Steam and Calcined Dolomite in Bubbling Fluidized Beds (기포유동층에서 수증기 및 소성된 백운석 첨가에 의한 바이오매스 가스화의 영향)

  • Jo, WooJin;Jeong, SooHwa;Park, SungJin;Choi, YoungTai;Lee, DongHyun
    • Korean Chemical Engineering Research
    • /
    • v.53 no.6
    • /
    • pp.783-791
    • /
    • 2015
  • A fluidized-bed reactor with an inside diameter of 0.1 m and a height of 1.2 m was used to study the effect of steam and catalyst additions to air-blown biomass gasification on the production of producer gas. The equipment consisted of a fluidized bed reactor, a fuel supply system, a cyclone, a condenser, two receivers, steam generator and gas analyzer. Silica sand with a mean particle diameter of $380{\mu}m$ was used as a bed material and calcined dolomite ($356{\mu}m$), which is effective in tar reduction and producer gas purification, was used as the catalyst. Both of Korea wood pellet (KWP) and a pellet form of EFB (empty fruit bunch) which is the byproduct of Southeast Asia palm oil extraction were examined as biomass feeds. In all the experiments, the feeding rates were 50 g/min for EFB and 38 g/min for KWP, respectively at the reaction temperature of $800^{\circ}C$ and an ER (equivalence ratio) of 0.25. The mixing ratio (0~100 wt%) of catalyst was applied to the bed material. Air or an air-steam mixture was used as the injection gas. The SBR (steam to biomass ratio) was 0.3. The composition, tar content, and lower heating value of the generated producer gas were measured. The addition of calcined dolomite decreased tar content in the producer gas with maximum reduction of 67.3 wt%. The addition of calcined dolomite in the air gasification reduced lower heating value of the producer gas. However The addition of calcined dolomite in the air-steam gasification slightly increased its lower heating value.

Detection of infectious pathogens in honeybee in Jeonbuk province, Korea (전북지역 꿀벌에서의 주요 병원체 검출)

  • Lee, Su-Ji;Yu, Cheong;Lee, Hee-Seon
    • Korean Journal of Veterinary Service
    • /
    • v.39 no.3
    • /
    • pp.137-140
    • /
    • 2016
  • The correct and quick diagnosis can be minimized damage from honeybee diseases. This study was carried out to detect infectious pathogens in honeybee in Jeonbuk province. 183 samples were collected from 8 area of Jeonbuk beekeeping farms in 2015 and 10 of infectious pathogens were examined through PCR and RT-PCR. Among 183 samples, positive rates of each disease were as follows; BQCV 43.7%, SBV 24.6%, DWV 16.4%, SB 15.8%, CB 10.4%, Nosemosis 7.1%, AFB 6.6%, EFB 1.1%, CBPV 1.1%, ABPV 0.0%. Among 28 beekeeping farms, 19 farms (67.9%) were infected with a complex of two or more diseases. The highest frequency of complex infections was BQCV.

Approach to Reduce CO2 by Renewable Fuel Cofiring for a Pulverized Coal Fired Boiler (신재생연료 혼소를 통한 미분탄 화력 발전소의 CO2 저감 방안 도출)

  • Kim, Taehyun;Choi, Sangmin;Yang, Won
    • 한국연소학회:학술대회논문집
    • /
    • 2013.06a
    • /
    • pp.19-20
    • /
    • 2013
  • The cofiring of renewable fuel in coal fired boilers is an attractive option to mitigate $CO_2$ emissions, since it is relatively low cost option for efficiently converting renewable fuel to electricity by adding biomass as partial substitute of coal. However, it would lead to reduce plant efficiency and flexibility in operation, and increase operation cost and capital cost associated with renewable fuels handling and firing equipment. The aim of this study is to investigate reduction of carbon dioxide at varying percentage of biomass in fuel blend to the boiler biomass, and estimate operation and capital cost. Wood pellet, PKS (palm kernel shell), EFB (empty fruit bunch) and sludge are considered as a renewable fuels for a cofiring with coal. Several approaches by the cofiring ratio are chosen from past plant demonstrations and commercial cofiring operation, and they are evaluated and discussed for CO2 reduction and cost estimation.

  • PDF

Growth and Structural Properties of Fe Thin Films Electrodeposited on n-Si(111) (n-Si(111) 기판 위에 전기증착에 의한 Fe 박막의 성장과 구조적 특성)

  • Kim Hyun-Deok;Park Kyeong-Won;Lee Jong-Duk
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.9
    • /
    • pp.1663-1670
    • /
    • 2006
  • Single crystal Fe thin films were grown directly onto n-Si(111) substrates by pulsed electrodeposition. Cyclic Voltammogram(CV) indicated that the $Fe^{2+}/n-Si(111)$ interface shows a good diode behavior by forming a Schottky barrier. From Mott-Schottky (MS) relation, it is found that the flat-band potential of n-Si(111) substrate and equilibrium redox potential of $Fet^{2+}$ ions are -0.526V and -0.316V, respectively. The nucleation and growth kinetics at the initial reaction stages of Fe/n-Si(111) substraste was studied by current transients. Current transients measurements have indicated that the deposition process starts via instantaneous nucleation and 3D diffusion limited growth. After the more deposition, the deposition flux of Fe ions was saturated with increase of deposition time. from the as-deposited sample obtained using the potential pulse of 1.4V and 300Hz, it is found that Fe nuclei grows to three dimensional(3D) islands with the average size of about 100nm in early deposition stages. As the deposition time increases, the sizes of Fe nuclei increases progressively and by a coalescence of the nuclei, a continuous Fe films grow on the Si surface. In this case, the Fe films show a highly oriented columnar structure and x-ray diffraction patterns reveal that the phase ${\alpha}-Fe$ grows on the n-Si(111) substrates.

Influence of Biomass Co-firing on a Domestic Pulverized Coal Power Plant In Terms of CO2 Abatement and Economical Feasibility (다양한 바이오매스 혼소시 국내 미분탄화력에 미치는 이산화탄소 감축 및 경제성 영향 분석)

  • Kim, Taehyun;Yang, Won
    • Journal of the Korean Society of Combustion
    • /
    • v.22 no.1
    • /
    • pp.14-22
    • /
    • 2017
  • Co-firing of renewable fuel in coal fired boilers is an attractive option to mitigate $CO_2$ emissions, since it is a relatively low cost option for efficiently converting renewable fuel to electricity by adding biomass as partial substitute of coal. However, it would cause reducing plant efficiency and operational flexibility, and increasing operation and capital cost associated with handling and firing equipment of renewable fuels. The aim of this study is to investigate the effects of biomass co-firing on $CO_2$ emission and capital/operating cost. Wood pellet, PKS (palm kernel shell), EFB (empty fruit bunch) and sludge are considered as renewable fuels for co-firing with coal. Several approaches by the co-firing ratio are chosen from previous plant demonstrations and commercial co-firing operation, and they are evaluated and discussed for $CO_2$ reduction and cost estimation.

A Study on the Improved the Hydrophobicity of Torrefied Biomass (반탄화 과정을 통한 바이오매스의 소수성 개선 연구)

  • JEONG, JAE-SEONG;KIM, GYEONG-MIN;JEONG, HYUN-JUN;KIM, GYU-BO;JEON, CHUNG-HWAN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.30 no.1
    • /
    • pp.49-57
    • /
    • 2019
  • Biomass, a carbon-neutral fuel, has great advantages because it can replace fossil fuels to reduce greenhouse gas emissions. However, due to its low density, high water content, and hydrophilicity, biomass has disadvantages for transportation and storage. To improve these properties, a pretreatment process of biomass is required. One of the various pre-treatment technologies, torrefacion, makes biomass similar to coal through low-temperature pyrolysis. In this study, torrefacion treatment was carried out at 200, 230, 250, 280, and $300^{\circ}C$ for wood pellet, empty fruit bunch (EFB) and kenaf, and the feasibility of replacing coal with fuel was examined. Hygroscopicity tests were conducted to analyze the hydrophobicity of biomass, and its chemical structure changes were investigated using Infrared spectrum analysis. It was confirmed that the hygroscopicity was decreased gradually as the torrefacion temperature increased according to the hygroscopicity tests. The hydrophilicity was reduced according to the pyrolysis of hemicellulose, cellulose, and lignin of biomass.

Apis cerana Beekeeping and Sacbrood Disease Management in Vietnam: Review

  • Thai, Pham Hong;Huyen, Nguyen Thi;Toan, Tran Van;Jung, Chuleui
    • Journal of Apiculture
    • /
    • v.33 no.4
    • /
    • pp.269-275
    • /
    • 2018
  • Beekeeping status of Apis cerana with emphasis of experiences overcoming sacbrood virus disease are presented. Social bee fauna are rich in Vietnam with 6 honeybee species (Apis laboriosa, Apis dorsata, Apis mellifera, Apis cerana, Apis andrenifomis, Apis florea); 8 stingless bee species (Trigona laeviceps, Trigona ventralis, Trigona pagdeni, Trigona gressitti, Trigona fuscobalteata, Trigona capenteri, Trigona scintillans Trigona iridipenis) and 2 bumble bee species (Bumbus haemorrhoidalis, B. breviceps). All of them are native except A. mellifera which was introduced in1887. These bees are slated for conservation by the Ministry of Agriculture & Rural Development. Honey and other bee products are mainly harvested from 3 species including A. cerana, A. mellifera and A. dorsata. The manageable species (A. cerana and A. mellifera) are increasing in number, reaching about 1,500,000 beehives. Vietnam is the second largest honey exporter in Asia, with a total of about 48,000 tons of honey exported to the international market in 2014. A. cerana plays an important role in poverty alleviation in mountainous and remote areas of Vietnam. Honeybee suffers from various diseases of Sacbrood virus disease (SBV), European foulbrood (EFB), Nosema, and parasitic mites of Tropilaelaps mercedes and Varroa destructor. Most of these diseases can be resolved with biocontrol methods. For the parasitic mites, Vietnamese beekeepers usually apply formic acid.