• Title/Summary/Keyword: EEG signal

Search Result 360, Processing Time 0.022 seconds

A design of FFT processor for EEG signal analysis (뇌전기파 분석용 FFT 프로세서 설계)

  • Kim, Eun-Suk;Shin, Kyung-Wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.11
    • /
    • pp.2548-2554
    • /
    • 2010
  • This paper describes a design of fast Fourier transform(FFT) processor for EEG(electroencephalogram) signal analysis for health care services. Hamming window function with 1/2 overlapping is adopted to perform short-time FFT(ST-FFT) of a long period EEG signal occurred in real-time. In order to analyze efficiently EEG signals which have frequency characteristics in the range of 0 Hz to 100 Hz, a 256-point FFT processor is designed, which is based on a single-memory bank architecture and the radix-4 algorithm. The designed FFT processor has been verified by FPGA implementation, and has high accuracy with arithmetic error less than 2%.

Comparisons of EEG waveform distortions caused by the signal conditioning filters

  • Chang, Tae-G.;Cho, Jae-H.;Yang, Won-Y.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10b
    • /
    • pp.509-513
    • /
    • 1992
  • This paper investigates the EEG waveform distortions caused by the transient responses of various types of signal conditioning filters, which are generally introduced for automated analysis of EEG. This study explicitly simulates the filter responses to the typical EEG waveform models, and compares the distortions. The filter distortion effects are also illustrated with the experiments on real EEG signals.

  • PDF

A Study on EEG based Concentration transmission and Brain Computer Interface Application (뇌파기반 집중도 전송 및 BCI 적용에 관한 연구)

  • Lee, Chung-Heon;Kwon, Jang-Woo;Kim, Gyu-Dong;Lee, Jun-Oh;Hong, Jun-Eui;Lee, Dong-Hoon
    • Proceedings of the KIEE Conference
    • /
    • 2008.10b
    • /
    • pp.155-156
    • /
    • 2008
  • This research measures EEG signals which are generating on head skin and extracts brain concentration level related with brain activity. We develop concentration wireless transmission system for controlling hardware by using this signal. Two channels are used for measuring EEG signal on front head and Biopac system with MP-100 and EEG100C was used for measuring EEG signal, amplifying and filtering the signal. LabView 8.5 was also used for FFT transformation, frequency and spectrum analysis of the measure EEG signal. As a result, ${\alpha}$ wave, ${\beta}$ wave, ${\theta}$ wave and ${\delta}$ wave were classified. we extracted the concentration index by adapting concentration extraction algorithm. This concentration index was transferred into lego automobile device by wireless module and applied for BCI application.

  • PDF

Nonlinear and Independent Component Analysis of EEG with Artifacts (잡파가 섞인 뇌파의 비선형 및 독립성분 분석)

  • Kim, Eung-Soo;Shin, Dong-Sun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.12 no.5
    • /
    • pp.442-450
    • /
    • 2002
  • In measuring EEG, which is widely used for studying brain function, EEG is frequently mixed with noise and artifact. In this study, the signals relevant to the artifact were distracted by applying ICA to EEG signal. First, each independent component which was assumed to be the source was separated by applying ICA to EEG which involved artifact relevant to the eye movement of a normal person. Next, the signal which was assumed to be artifact was removed from the separated 18 independent components, and the nonlinear analysis method such as correlation dimension and the Iyapunov exponent was applied to each reconstructed EEG signal and the original signal including artifact in order to find meaningful difference between the two signals and infer the anatomical localization of its source and distribution. This study shows it is possible not only to analyze the brain function visually and spatially for visually complex EEG signal, but also to observe its meaningful change through the quantitative analysis of EEG by means of the nonlinear analysis.

Electroencephalogram(EEG) Activation Changes and Correlations of signal with EMG Output by left and right biceps (좌우 이두근의 근전도 출력에 따른 뇌파의 활성도 변화와 관련성 탐색)

  • Jeon, BuIl;Kim, Jongwon
    • Journal of IKEEE
    • /
    • v.23 no.2
    • /
    • pp.727-734
    • /
    • 2019
  • This paper confirms whether the movement or specific operation of the muscles in the process of transferring a person from the brain can find a signal showing an essential feature of a certain part of the brain. As a rule, the occurrence of EEG(Electroencephalogram) changes when a signal is received from a specific action or from an induced action. These signals are very vague and difficult to distinguish from the naked eye. Therefore, it is necessary to define a signal for analysis before classification. The EEG form can be divided into the alpha, beta, delta, theta and gamma regions in the frequency ranges. The specific size of these signals does not reflect the exact behavior or intention, since the band or energy difference of the activated frequencies varies depending on the EEG measurement domain. However, if different actions are performed in a specific method, it is possible to classify the movement based on EEG activity and to determine the EEG tendency affecting the movement. Therefore, in this article, we first study the EEG expression pattern based on the activation of the left and right biceps EMG, and then we determine whether there is a significant difference between the EEG due to the activation of the left and right muscles through EEG. If we can find the EEG classification criteria in accordance with the EMG activation, it can help to understand the form of the transmitted signal in the process of transmitting signals from the brain to each muscle. In addition, we can use a lot of unknown EEG information through more complex types of brain signal generation in the future.

High-rate BCI spelling System using eye-closed EEG signals (닫힌 눈(eye-closed) EEG신호를 이용한 높은 비율BCI 맞춤법 시스템)

  • Nguyen, Trung-Hau;Yang, Da-lin;Kim, Jong-Jin;Chung, Wan-Young
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.18 no.2
    • /
    • pp.31-36
    • /
    • 2017
  • This study aims to develop an BCI speller utilizing eye-closed and double-blinking EEG based on asynchronous mechanism. The proposed system comprised a signal processing module and a graphical user interface (virtual keyboard-VK) with 26 English characters plus a special symbol. A detected "eye-closed" event induces the "select" command, whereas a "double-blinking" (DB) event functions the "undo" command. A three-class support vector machine (SVM) classifier involving EEG signal analysis of three groups of events ("eye-open"-idle state, "eye-closed", and "double -blinking") is proposed. The results showed that the proposed BCI could achieve an overall accuracy of 92.6% and a spelling rate of 5 letters/min on average. Overall, this study showed an improvement of accuracy and the spelling rate resulting from in the feasibility and reliability of implementing a real-world BCI speller.

  • PDF

A Study on Application of the Multi-layor Perceptron to the Human Sensibility Classifier with Eletroencephalogram (뇌파의 감성 분류기로서 다층 퍼셉트론의 활용에 관한 연구)

  • Kim, Dong Jun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.11
    • /
    • pp.1506-1511
    • /
    • 2018
  • This study presents a human sensibility evaluation method using neural network and multiple-template method on electroencephalogram(EEG). We used a multi-layer perceptron type neural network as the sensibility classifier using EEG signal. For our research objective, 10-channel EEG signals are collected from the healthy subjects. After the necessary preprocessing is performed on the acquired signals, the various EEG parameters are estimated and their discriminating performance is evaluated in terms of pattern classification capability. In our study, Linear Prediction(LP) coefficients are utilized as the feature parameters extracting the characteristics of EEG signal, and a multi-layer neural network is used for indicating the degree of human sensibility. Also, the estimation for human comfortableness is performed by varying temperature and humidity environment factors and our results showed that the proposed scheme achieved good performances for evaluation of human sensibility.

Relativity between Concentration by Letter Visual Stimulus and EEG Signal (글자 시각자극에 의한 집중과 EEG신호의 상관성)

  • Jang, Yun-Seok;Han, Jae-Woong
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.9 no.11
    • /
    • pp.1277-1282
    • /
    • 2014
  • In this paper, we aimed to analysis EEG signals related to concentration of adolescents using letter visual stimulus to induce the concentration. The visual stimulus tasks were searching errors of propositional particle in several sentences. In the EEG signals, we specially focussed on SMR waves and mid-beta waves according to the results of a preceding research. Therefore we presented position of channel and frequency band of mid-beta significantly related to the concentration waves as the experimental results.

A Study on EEG based Concentration Transmission and Brain Computer Interface Application (뇌파기반 집중도 전송 및 BCI 적용에 관한 연구)

  • Lee, Chung-Heon;Kwon, Jang-Woo;Kim, Gyu-Dong;Hong, Jun-Eui;Shin, Dae-Seob;Lee, Dong-Hoon
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.46 no.2
    • /
    • pp.41-46
    • /
    • 2009
  • This research measures EEG signals which are generating on head skin and extracts brain concentration level related with brain activity. We develop concentration wireless transmission system for controlling hardware by using this signal. Two channels are used for measuring EEG signal on front head and Biopac system with MP100 and EEG100C was used for measuring EEG signal, amplifying and filtering the signal. LabView 8.5 was also used for FFT transformation, frequency and spectrum analysis of the measured EEG signals. As a result, SMR wave, Mid-Bata wave, $\Theta$ wave classified. We extracted the concentration index by adapting concentration extraction algorithm. This concentration uldex was transferred into logo automobile device by wireless module and applied for BCI application.

EEG Analysis Following Change in Hand Grip Force Level for BCI Based Robot Arm Force Control (BCI 기반 로봇 손 제어를 위한 악력 변화에 따른 EEG 분석)

  • Kim, Dong-Eun;Lee, Tae-Ju;Park, Seung-Min;Ko, Kwang-Eun;Sim, Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.23 no.2
    • /
    • pp.172-177
    • /
    • 2013
  • With Brain Computer Interface (BCI) system, a person with disabled limb could use this direct brain signal like electroencephalography (EEG) to control a device such as the artifact arm. The precise force control for the artifact arm is necessary for this artificial limb system. To understand the relationship between control EEG signal and the gripping force of hands, We proposed a study by measuring EEG changes of three grades (25%, 50%, 75%) of hand grip MVC (Maximal Voluntary Contract). The acquired EEG signal was filtered to obtain power of three wave bands (alpha, beta, gamma) by using fast fourier transformation (FFT) and computed power spectrum. Then the power spectrum of three bands (alpha, beta and gamma) of three classes (MVC 25%, 50%, 75%) was classified by using PCA (Principal Component Analysis) and LDA (Linear Discriminant Analysis). The result showed that the power spectrum of EEG is increased at MVC 75% more than MVC 25%, and the correct classification rate was 52.03% for left hand and 77.7% for right hand.