• Title/Summary/Keyword: EEG signal

Search Result 364, Processing Time 0.026 seconds

Connectivity Analysis Between EEG and EMG Signals by the Status of Movement Intention (운동 의도에 따른 뇌파-근전도 신호 간 연결성 분석)

  • Kim, Byeong-Nam;Kim, Yun-Hee;Kim, Laehyun;Kwon, Gyu-Hyun;Jang, Won-Seuk;Yoo, Sun-Kook
    • Science of Emotion and Sensibility
    • /
    • v.19 no.1
    • /
    • pp.31-38
    • /
    • 2016
  • The brain and muscles both of which are composed of top-down structure occur the connectivity with the change of Electroencephalogram(EEG) and Electromyogram(EMG). In this paper, we studied the difference of functional connectivity between brain and muscles that by applying coherence method to EEG and EMG signals when users exercised upper limb with and without the movement intention. The changes in the EEG and EMG signals were inspected using coherence method. During the upper limb exercise, the mu (8~14 Hz) and beta (15~30 Hz) rhythms of the EEG signal at the motor cortex area are activated. And then the beta and piper (30~60 Hz) rhythms of the EMG signal are activated as well. The result of coherence analysis between EEG and EMG showed the coefficient of active exercise including movement intention is significantly higher than passive exercise. The coherence relations between cognitive response and muscle movement could interpret that the connectivity between the brain and muscle appear during active exercise with movement intention. The feature of coherence between brain and muscles by the status of movement intention will be useful in designing the rehabilitation system requiring feedback depending on the users' movement intention status.

Development of an Active Dry EEG Electrode Using an Impedance-Converting Circuit (임피던스 변환 회로를 이용한 건식능동뇌파전극 개발)

  • Ko, Deok-Won;Lee, Gwan-Taek;Kim, Sung-Min;Lee, Chany;Jung, Young-Jin;Im, Chang-Hwan;Jung, Ki-Young
    • Annals of Clinical Neurophysiology
    • /
    • v.13 no.2
    • /
    • pp.80-86
    • /
    • 2011
  • Background: A dry-type electrode is an alternative to the conventional wet-type electrode, because it can be applied without any skin preparation, such as a conductive electrolyte. However, because a dry-type electrode without electrolyte has high electrode-to-skin impedance, an impedance-converting amplifier is typically used to minimize the distortion of the bioelectric signal. In this study, we developed an active dry electroencephalography (EEG) electrode using an impedance converter, and compared its performance with a conventional Ag/AgCl EEG electrode. Methods: We developed an active dry electrode with an impedance converter using a chopper-stabilized operational amplifier. Two electrodes, a conventional Ag/AgCl electrode and our active electrode, were used to acquire EEG signals simultaneously, and the performance was tested in terms of (1) the electrode impedance, (2) raw data quality, and (3) the robustness of any artifacts. Results: The contact impedance of the developed electrode was lower than that of the Ag/AgCl electrode ($0.3{\pm}0.1$ vs. $2.7{\pm}0.7\;k{\Omega}$, respectively). The EEG signal and power spectrum were similar for both electrodes. Additionally, our electrode had a lower 60-Hz component than the Ag/AgCl electrode (16.64 vs. 24.33 dB, respectively). The change in potential of the developed electrode with a physical stimulus was lower than for the Ag/AgCl electrode ($58.7{\pm}30.6$ vs. $81.0{\pm}19.1\;{\mu}V$, respectively), and the difference was close to statistical significance (P=0.07). Conclusions: Our electrode can be used to replace Ag/AgCl electrodes, when EEG recording is emergently required, such as in emergency rooms or in intensive care units.

SVM-Based EEG Signal for Hand Gesture Classification (서포트 벡터 머신 기반 손동작 뇌전도 구분에 대한 연구)

  • Hong, Seok-min;Min, Chang-gi;Oh, Ha-Ryoung;Seong, Yeong-Rak;Park, Jun-Seok
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.7
    • /
    • pp.508-514
    • /
    • 2018
  • An electroencephalogram (EEG) evaluates the electrical activity generated by brain cell interactions that occur during brain activity, and an EEG can evaluate the brain activity caused by hand movement. In this study, a 16-channel EEG was used to measure the EEG generated before and after hand movement. The measured data can be classified as a supervised learning model, a support vector machine (SVM). To shorten the learning time of the SVM, a feature extraction and vector dimension reduction by filtering is proposed that minimizes motion-related information loss and compresses EEG information. The classification results showed an average of 72.7% accuracy between the sitting position and the hand movement at the electrodes of the frontal lobe.

Eyeball Movements Removal in EEG by Independent Component Analysis (독립성분분석에의한 뇌파 안구운동 제거)

  • Shim, Yong-Soo;Choi, Seong-Ho;Lee, Il-Keun
    • Annals of Clinical Neurophysiology
    • /
    • v.3 no.1
    • /
    • pp.26-30
    • /
    • 2001
  • Purpose : Eyeball movement is one of the main artifacts in EEG. A new approach to the removal of these artifacts is presented using independent component analysis(ICA). This technique is a signal-processing algorithm to separate independent sources from unknown mixed signals. This study was performed to show that ICA is a useful method for the separation of EEG components with little data deformity. Methods : 12 sets of 10 sec digital EEG data including eye opening and closure were obtained using international 10~20 system scalp electrodes. ICA with 18 tracings of double banana bipolar montage was performed. Among obtained 18 independent components, two components, which were thought to be eyeball movements were removed. Other 16 components were reconstructed into original bipolar montage. Power spectral analysis of EEGs before and after ICA was done and compared statistically. Total 12 pairs of data were compared by visual inspection and relative power comparison. Results : Waveforms of each pair looked alike by visual inspection. Means of relative power before and after ICA were 29.16% vs. 28.27%, 12.12% vs. 12.41%, 10.55% vs. 10.52%, and 19.33% vs. 18. 33% for alpha, beta, theta, and delta, respectively. These values were statistically same before and after ICA. Conclusions : We found little data deformity after ICA and it was possible to isolate eyeball movements in EEG recordings. Many other components of EEG could be selectively separated using ICA.

  • PDF

Research of Real-Time Emotion Recognition Interface Using Multiple Physiological Signals of EEG and ECG (뇌파 및 심전도 복합 생체신호를 이용한 실시간 감정인식 인터페이스 연구)

  • Shin, Dong-Min;Shin, Dong-Il;Shin, Dong-Kyoo
    • Journal of Korea Game Society
    • /
    • v.15 no.2
    • /
    • pp.105-114
    • /
    • 2015
  • We propose a real time user interface that utilizes emotion recognition by physiological signals. To improve the problem that was low accuracy of emotion recognition through the traditional EEG(ElectroEncephaloGram), We developed a physiological signals-based emotion recognition system mixing relative power spectrum values of theta/alpha/beta/gamma EEG waves and autonomic nerve signal ratio of ECG (ElectroCardioGram). We propose both a data map and weight value modification algorithm to recognize six emotions of happy, fear, sad, joy, anger, and hatred. The datamap that stores the user-specific probability value is created and the algorithm updates the weighting to improve the accuracy of emotion recognition corresponding to each EEG channel. Also, as we compared the results of the EEG/ECG bio-singal complex data and single data consisting of EEG, the accuracy went up 23.77%. The proposed interface system with high accuracy will be utillized as a useful interface for controlling the game spaces and smart spaces.

Recognition of the emotional state through the EEG (뇌파를 통한 감정 상태 인식에 관한 연구)

  • Ji, Hoon;Lee, Chung-heon;Park, Mun-Kyu;An, Young-jun;Lee, Dong-hoon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.05a
    • /
    • pp.958-961
    • /
    • 2015
  • Emotional expression is universal and emotional state impacts important areas in our life. Until now, analyzing the acquired EEG signals under circumstances caused by invoked feelings and efforts to define their emotional state have been made mainly by psychologists based on the results. But, recently emotion-related information was released by research results that it is possible to identify mental activity through measuring and analyzing the brain EEG signals. So, this study has compared and analyzed emotional expressions of human by using brain waves. To get EEG difference for a particular emotion, we showed specific subject images to the people for changing emotions that peace, joy, sadness and stress, etc. After measured EEG signals were converged into frequence domain by FFT signal process, we have showed EEG changes in emotion as a result of the performance analyzing each respective power spectrum of delta, theta, alpha, beta and gamma waves.

  • PDF

EEG Signal Characteristic Analysis for Monitoring of Anesthesia Depth Using Bicoherence Analysis Method (바이코히어런스 분석 기법을 이용한 마취 단계별 뇌파의 특성 분석)

  • Park Jun-Mo;Park Jong-Duk;Jeon Gye-Rok;Huh Young
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.55 no.1
    • /
    • pp.35-41
    • /
    • 2006
  • Although reachers have studied for a long time, they don't make criteria for anesthesia depth. anesthetists can't make a prediction about patient's reaction. Therefor, patients have potential risk such as poisonous side effect late-awake, early-awake and strain reaction. EEG are received from twenty-five patients who agreed to investigate themselves during operation with Enflurane-anesthesis in progress of anesthesia. EEG are divided pre-anesthesia, before incision of skin, operation 1, operation 2, awaking, post-anesthesia by anesthesia progress step. EEG is applied pre-processing, base line correct, linear detrend to get more reliable data. EEG data are handled by electronic processing and the EEG data are calculated by bicoherence. During pre-anesthesia and post anesthesia, appearance rate of bicoherence value is observed strong appearance rate in high frequency range($15\~30Hz$). During the anesthesia of patient, a strong appearance rate is revealed the low frequency area(0~10Hz). After bicoherence is calculated by percentage of a appearance rate, that is, Bicpara$\#$1, Bicpara$\#$2, Bicpara$\#$3 and Bicpara$\#$4 parameter are extracted. In result of bicoherence analysis, Bicpara$\#$2 and Bicpara#4 are considered that the best parameter showed progress of anesthesia effectively. And each separated bicoherence are calculated by average bicoherence's numerical value, divide by 2 area, appear by each BicHz$\#$1, BicHz$\#$2, and observed BicHz$\#$1/BicHz$\#$2's change. In result of bicoherence analysis, BicHz$\#$1, BicHz$\#$2 and BicHz$\#$1/BicHz$\#$2 are considered that the best parameter showed progress of anesthesia effectively. In conclusion, I confirmed the anesthesia progress phase, concluded to usefulness of parameter on bispectrum and bicoherence analysis and evaluated the depth of anesthesia. In the future, it is going to use for doctor's diagnosis and apply to protect an medical accident owing to anesthesia.

Optimal EEG Channel Selection using BPSO with Channel Impact Factor (Channel Impact Factor 접목한 BPSO 기반 최적의 EEG 채널 선택 기법)

  • Kim, Jun-Yeup;Park, Seung-Min;Ko, Kwang-Eun;Sim, Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.6
    • /
    • pp.774-779
    • /
    • 2012
  • Brain-computer interface based on motor imagery is a system that transforms a subject's intention into a control signal by classifying EEG signals obtained from the imagination of movement of a subject's limbs. For the new paradigm, we do not know which positions are activated or not. A simple approach is to use as many channels as possible. The problem is that using many channels causes other problems. When applying a common spatial pattern (CSP), which is an EEG extraction method, many channels cause an overfit problem, in addition there is difficulty using this technique for medical analysis. To overcome these problems, we suggest a binary particle swarm optimization with channel impact factor in order to select channels close to the most important channels as channel selection method. This paper examines whether or not channel impact factor can improve accuracy by Support Vector Machine(SVM).

A Review on Correlation between Music and Learning Activity Using EEG Signal Analysis (뇌파분석을 이용한 음악이 학습활동에 미치는 영향에 대한 고찰)

  • Yun-Seok Jang
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.2
    • /
    • pp.367-372
    • /
    • 2023
  • In this paper, we analyzed through the EEG signals how musical stimulus affects learning activities. Musical stimuli were divided into sedative and stimulative tendency music, preferred and non-preferred music, and the learning activity tasks were divided into mathematics tasks and memorization tasks. The signals measured in the EEG experiments were analyzed with the power spectrum of SMR waves known to be related to human concentration. Those spectra used for quantitative comparison in this paper. As a result the power of the EEG signals was observed to be greater than the case where music was given as a stimulus. Regardless of the type of task, the power of the EEG signals was observed to be greater in the case of sedative tendency than in the case of stimulative tendency, and the power of the EEG signals was observed to be greater in the case of favorite music than in the case of unfavorite music. From these results, it is estimated that if the musical stimulus exists, in the case of sedative tendency music, and in the case of favorite music, concentration can be increased than in the relative case.

Optimal EEG Channel Selection by Genetic Algorithm and Binary PSO based on a Support Vector Machine (Support Vector Machine 기반 Genetic Algorithm과 Binary PSO를 이용한 최적의 EEG 채널 선택 기법)

  • Kim, Jun Yeup;Park, Seung-Min;Ko, Kwang-Eun;Sim, Kwee-Bo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.6
    • /
    • pp.527-533
    • /
    • 2013
  • BCI (Brain-Computer Interface) is a system that transforms a subject's brain signal related to their intention into a control signal by classifying EEG (electroencephalograph) signals obtained during the imagination of movement of a subject's limbs. The BCI system allows us to control machines such as robot arms or wheelchairs only by imaging limbs. With the exact same experiment environment, activated brain regions of each subjects are totally different. In that case, a simple approach is to use as many channels as possible when measuring brain signals. However the problem is that using many channels also causes other problems. When applying a CSP (Common Spatial Pattern), which is an EEG extraction method, many channels cause an overfitting problem, and in addition there is difficulty using this technique for medical analysis. To overcome these problems, we suggest an optimal channel selection method using a BPSO (Binary Particle Swarm Optimization), BPSO with channel impact factor, and GA. This paper examined optimal selected channels among all channels using three optimization methods and compared the classification accuracy and the number of selected channels between BPSO, BPSO with channel impact factor, and GA by SVM (Support Vector Machine). The result showed that BPSO with channel impact factor selected 2 fewer channels and even improved accuracy by 10.17~11.34% compared with BPSO and GA.