The objective of the study is to discriminate EEG(electroencephalogram) due to emotional changes. Emotion was evoked by the series of auditory stimuli which were selected from the natural sounds in the sound effect collection of compact disc. Seventeen university students participated and experienced positive or negative emotions by six auditory stimuli with intermission between stimuli. Temporal EEG ($T_3$, $T_4$, $T_5$, and $T_6$) was recorded at the same time and a subjective test was performed on the eleven point scales after the experiment. The maximum and minimum scores of the EEG among six stimuli EEG were analyzed for discrimination of emotion. The EEG signals were transformed into feature objects based on scalar intervention model coefficients. Auditory stimulus was considered as intervention variable. They were classified by Discriminant Analysis for each channel. The features showed results with the best classification accuracy of 91.2 % in $T_4$ for auditory stimuli. This study could be extended to establish an algorithm which quantifies and classifies emotions evoked by auditory stimulus using time-series models.
This paper interprets the relationship between the physical activity of the human and the signal of the brain to show the meaningful results in the process of sending and receiving information to the connected muscles. When a person works or thinks, a specific brain signal is generated from the brain and being trasmmited to the connected part. The EMG signal, which has muscle activity information, outputs the result of the muscle activation as an electrical signal, which outputs muscle activity information usually due to muscle contraction and relaxation. The purpose of this study is to analyze the relationship between the two signals, which are difficult to identify easily by visual data extraction and data acquisition by extracting such EMG and EMG in real time.
This paper illustrates the inter-relationship between the theta/alpha ratio of the EEG signal and multiple HRV related parameters associated with the cardiovascular system response during event-related stimuli. Both EEG and PPG signals were simultaneously recorded in 21 healthy subjects. All subjects had their attention focused on the CNT program for nine minutes. Time-frequency analysis was applied to the EEG and PPG signals. The theta/alpha ratio was extracted from the EEG results, and the HRV features, including beat interval(1), SDNN(2), RMSSD(3), NN50(4), LF(5), HF(6), and LFIHF(7), were extracted from the PPG. Through multiple linear regression, the relationship ($R^2$) between the multiple combined features and the theta/alpha rhythm was identified. As a result, the combinations of $R^2$($R^2=0.253$; seven dimensions) and the theta/alpha ratio indicated a higher inter-relationship value than those of other combinations. The combinations of features that were greater than three dimensions, based on {SDNN(2), HF(6)}, generally showed higher $R^2$ value. We demonstrate that the high dimensional combinations had a higher correlation than did the low dimensional combinations.
In this paper, we studied the brain-computer interface (BCI). BCIs help severely disabled people to control external devices by analyzing their brain signals evoked from motor imageries. The findings in the field of neurophysiology revealed that the power of $\beta$(14-26 Hz) and $\mu$(8-12 Hz) rhythms decreases or increases in synchrony of the underlying neuronal populations in the sensorymotor cortex when people imagine the movement of their body parts. These are called Event-Related Desynchronization / Synchronization (ERD/ERS), respectively. We implemented a BCI-based mouse interface system which enabled subjects to control a computer mouse cursor into four different directions (e.g., up, down, left, and right) by analyzing brain signal patterns online. Tongue, foot, left-hand, and right-hand motor imageries were utilized to stimulate a human brain. We used a non-invasive EEG which records brain's spontaneous electrical activity over a short period of time by placing electrodes on the scalp. Because of the nature of the EEG signals, i.e., low amplitude and vulnerability to artifacts and noise, it is hard to analyze and classify brain signals measured by EEG directly. In order to overcome these obstacles, we applied statistical machine-learning techniques. We could achieve high performance in the classification of four motor imageries by employing Common Spatial Pattern (CSP) and Linear Discriminant Analysis (LDA) which transformed input EEG signals into a new coordinate system making the variances among different motor imagery signals maximized for easy classification. From the inspection of the topographies of the results, we could also confirm ERD/ERS appeared at different brain areas for different motor imageries showing the correspondence with the anatomical and neurophysiological knowledge.
Journal of the Institute of Electronics and Information Engineers
/
v.52
no.8
/
pp.117-125
/
2015
In this paper, we propose a classification algorithm based on the obtained EEG(Electroencephalogram) signal for the control of 'left' and 'right' turnings of which a driving system composed of EEG sensor, Labview, DAQ, Matlab and driving robot. The proposed algorithm uses features extracted from frequency band information obtained by DWT (Discrete Wavelet Transform) and selects features of high discrimination by using Fisher score. We, also propose the number of feature vectors for the best classification performance by using SVM(Support Vector Machine) classifier and propose a decision pending algorithm based on MLD (Maximum Likelihood Decision) to prevent malfunction due to misclassification. The selected four feature vectors for the proposed algorithm are the mean of absolute value of voltage and the standard deviation of d5(2-4Hz) and d2(16-32Hz) frequency bands of P8 channel according to the international standard electrode placement method. By using the SVM classifier, we obtained 98.75% accuracy and 1.25% error rate. Also, when we specify error probability of 70% for decision pending, we obtained 95.63% accuracy and 0% error rate by using the proposed decision pending algorithm.
MEMS(Micro Electro-mechanical System) are getting attention as promising industry in the 21st century. Car air bags, acceleration sensors, and medical, information appliances are being actively applied in MEMS. This paper suggest the electrical electrodes of brain signal applied MEMS model and the prototype design for EEG signal amplification circuit. Also, we suggest an independent BCI(Brain Computer Interface) system with brain electrical signal of electrode models and wireless communication platform.
Kim, Hyun-Kyu;Kim, Hyun-Joon;Kim, Hyung-Tae;Choi, Tae-Jong;Byeon, Mi-Kyeong;Min, Hong-Ki;Park, Young-Bae;Huh, Woong
Proceedings of the IEEK Conference
/
2006.06a
/
pp.887-888
/
2006
In this paper, we devised mac-yule detection system which provide resting state mac-yule. The devised system composed of signal transformation part, signal processing part, and PC based display part. Hardware part consisit of PPG, ECG, EEG, EMG, and RSP. Also, software system consist of bio-signal processing software which detecting mac-yule. EEG-$\alpha$, $\beta$ wave analysis algorithm that use wavelet transformation, RSP detecting algorithm which used zero-crossing method.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2009.10a
/
pp.289-292
/
2009
A person does communication between each other using language. But In the case of disabled person can not communication own idea to use writing and gesture. Therefore, In this paper, we embodied communication system using the facial muscle signals so that disabled person can do communication. Especially, After feature extraction of the EEG included facial muscle, it is converted the facial muscle into control signal, and then select character and communicate using a minimum list keyboard.
We are exposed to the various external stimuli input from the environment, which cause emotional changes based on the characteristics of the stimuli. Unfortunately there are no quantitative results on relationship between human sensibility and the characteristics of physiological signals. The objective of this study was to quantify EEG signals evoked by auditory stimulation based on the assumption that the analysis of the variability on the characteristics of the EEG waveform may provide the significant information regarding changes in psychological states of the subject. The experiment was devised with seven experimental conditions, which are control and six different types of auditory stimulation. Six subjects were used to obtain EEGs while introducing auditory stimulation. Wavelet transformation was employed to analyze the EEG signals. The results showed that the reconstructed signals at the decomposition level revealed the different energy value on the EEG signal. Also, general patterns of EEG signals in rest state compare with negative and positive stimulus were found. This study could be extended to establish an algorithm which distinguishes psychophysiological states of the subjects exposed to the auditory stimulation.
In this paper, the new architecture of seizure prediction using CNN and LSTM and DWT was presented. In the proposed architecture, EEG data was labeled into a preictal and interictal section, and DWT was adopted to the preprocessing process to apply the characteristics of the time and frequency domain of the processed EEG signal. Also, CNN was applied to extract the spatial characteristics of each electrode used for EEG measurement, and LSTM neural network was applied to verify the logical order of the preictal section. The learning of the proposed architecture utilizes the CHB-MIT Scalp EEG dataset, and the sliding window technique is applied to balance the dataset between the number of interictal sections and the number of preictal sections. As a result of the simulation of the proposed architecture, a sensitivity of 81.22% and an FPR of 0.174 were obtained.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.