• Title/Summary/Keyword: EEG Signal

Search Result 364, Processing Time 0.038 seconds

Multivariate Analysis of EEG Signal using Intervention Models (개입모형을 이용한 EEG 신호의 다변량 분석에 관한 연구)

  • Im, Seong-Sik;Kim, Jin-Ho;Kim, Chi-Yong;Hwang, Min-Cheol
    • Journal of the Ergonomics Society of Korea
    • /
    • v.18 no.1
    • /
    • pp.13-24
    • /
    • 1999
  • The objective of the study is to discriminate EEG(electroencephalogram) due to emotional changes. Emotion was evoked by the series of auditory stimuli which were selected from the natural sounds in the sound effect collection of compact disc. Seventeen university students participated and experienced positive or negative emotions by six auditory stimuli with intermission between stimuli. Temporal EEG ($T_3$, $T_4$, $T_5$, and $T_6$) was recorded at the same time and a subjective test was performed on the eleven point scales after the experiment. The maximum and minimum scores of the EEG among six stimuli EEG were analyzed for discrimination of emotion. The EEG signals were transformed into feature objects based on scalar intervention model coefficients. Auditory stimulus was considered as intervention variable. They were classified by Discriminant Analysis for each channel. The features showed results with the best classification accuracy of 91.2 % in $T_4$ for auditory stimuli. This study could be extended to establish an algorithm which quantifies and classifies emotions evoked by auditory stimulus using time-series models.

  • PDF

Changes in EEG Activity Synchronized with EMG output of Biceps and Signal Control Possibility (이두근의 근전도 출력과 동기화된 뇌파의 활성도 변화와 신호의 제어 가능성)

  • Jeon, Bu-Il;Cho, Hyun-Chan
    • Journal of IKEEE
    • /
    • v.22 no.4
    • /
    • pp.1195-1201
    • /
    • 2018
  • This paper interprets the relationship between the physical activity of the human and the signal of the brain to show the meaningful results in the process of sending and receiving information to the connected muscles. When a person works or thinks, a specific brain signal is generated from the brain and being trasmmited to the connected part. The EMG signal, which has muscle activity information, outputs the result of the muscle activation as an electrical signal, which outputs muscle activity information usually due to muscle contraction and relaxation. The purpose of this study is to analyze the relationship between the two signals, which are difficult to identify easily by visual data extraction and data acquisition by extracting such EMG and EMG in real time.

An analysis of correlation between EEG signal and HRV during attentional status with children under 15 years (15세 미만 아동을 대상으로 한 집중상태에서 EEG 신호와 HRV의 상관관계 분석)

  • Choi, Woo-Jin;Lee, Chug-Ki;Yoo, Sun-Kook
    • Science of Emotion and Sensibility
    • /
    • v.14 no.2
    • /
    • pp.269-278
    • /
    • 2011
  • This paper illustrates the inter-relationship between the theta/alpha ratio of the EEG signal and multiple HRV related parameters associated with the cardiovascular system response during event-related stimuli. Both EEG and PPG signals were simultaneously recorded in 21 healthy subjects. All subjects had their attention focused on the CNT program for nine minutes. Time-frequency analysis was applied to the EEG and PPG signals. The theta/alpha ratio was extracted from the EEG results, and the HRV features, including beat interval(1), SDNN(2), RMSSD(3), NN50(4), LF(5), HF(6), and LFIHF(7), were extracted from the PPG. Through multiple linear regression, the relationship ($R^2$) between the multiple combined features and the theta/alpha rhythm was identified. As a result, the combinations of $R^2$($R^2=0.253$; seven dimensions) and the theta/alpha ratio indicated a higher inter-relationship value than those of other combinations. The combinations of features that were greater than three dimensions, based on {SDNN(2), HF(6)}, generally showed higher $R^2$ value. We demonstrate that the high dimensional combinations had a higher correlation than did the low dimensional combinations.

  • PDF

Motor Imagery Brain Signal Analysis for EEG-based Mouse Control (뇌전도 기반 마우스 제어를 위한 동작 상상 뇌 신호 분석)

  • Lee, Kyeong-Yeon;Lee, Tae-Hoon;Lee, Sang-Yoon
    • Korean Journal of Cognitive Science
    • /
    • v.21 no.2
    • /
    • pp.309-338
    • /
    • 2010
  • In this paper, we studied the brain-computer interface (BCI). BCIs help severely disabled people to control external devices by analyzing their brain signals evoked from motor imageries. The findings in the field of neurophysiology revealed that the power of $\beta$(14-26 Hz) and $\mu$(8-12 Hz) rhythms decreases or increases in synchrony of the underlying neuronal populations in the sensorymotor cortex when people imagine the movement of their body parts. These are called Event-Related Desynchronization / Synchronization (ERD/ERS), respectively. We implemented a BCI-based mouse interface system which enabled subjects to control a computer mouse cursor into four different directions (e.g., up, down, left, and right) by analyzing brain signal patterns online. Tongue, foot, left-hand, and right-hand motor imageries were utilized to stimulate a human brain. We used a non-invasive EEG which records brain's spontaneous electrical activity over a short period of time by placing electrodes on the scalp. Because of the nature of the EEG signals, i.e., low amplitude and vulnerability to artifacts and noise, it is hard to analyze and classify brain signals measured by EEG directly. In order to overcome these obstacles, we applied statistical machine-learning techniques. We could achieve high performance in the classification of four motor imageries by employing Common Spatial Pattern (CSP) and Linear Discriminant Analysis (LDA) which transformed input EEG signals into a new coordinate system making the variances among different motor imagery signals maximized for easy classification. From the inspection of the topographies of the results, we could also confirm ERD/ERS appeared at different brain areas for different motor imageries showing the correspondence with the anatomical and neurophysiological knowledge.

  • PDF

EEG Signal Classification Algorithm based on DWT and SVM for Driving Robot Control (주행로봇제어를 위한 DWT와 SVM기반의 EEG신호 분류 알고리즘)

  • Lee, Kibae;Lee, Chong Hyun;Bae, Jinho;Lee, Jaeil
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.8
    • /
    • pp.117-125
    • /
    • 2015
  • In this paper, we propose a classification algorithm based on the obtained EEG(Electroencephalogram) signal for the control of 'left' and 'right' turnings of which a driving system composed of EEG sensor, Labview, DAQ, Matlab and driving robot. The proposed algorithm uses features extracted from frequency band information obtained by DWT (Discrete Wavelet Transform) and selects features of high discrimination by using Fisher score. We, also propose the number of feature vectors for the best classification performance by using SVM(Support Vector Machine) classifier and propose a decision pending algorithm based on MLD (Maximum Likelihood Decision) to prevent malfunction due to misclassification. The selected four feature vectors for the proposed algorithm are the mean of absolute value of voltage and the standard deviation of d5(2-4Hz) and d2(16-32Hz) frequency bands of P8 channel according to the international standard electrode placement method. By using the SVM classifier, we obtained 98.75% accuracy and 1.25% error rate. Also, when we specify error probability of 70% for decision pending, we obtained 95.63% accuracy and 0% error rate by using the proposed decision pending algorithm.

The amplifier-circuit design of EEG sensor based on MEMS (초소형정밀기계기술이 적용된 뇌파센서의 신호 증폭 회로설계)

  • Choi, Sung-Ja;Lee, Seung-Han;Cho, Young-Taek;Cho, Han-Wook
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.1427-1428
    • /
    • 2015
  • MEMS(Micro Electro-mechanical System) are getting attention as promising industry in the 21st century. Car air bags, acceleration sensors, and medical, information appliances are being actively applied in MEMS. This paper suggest the electrical electrodes of brain signal applied MEMS model and the prototype design for EEG signal amplification circuit. Also, we suggest an independent BCI(Brain Computer Interface) system with brain electrical signal of electrode models and wireless communication platform.

  • PDF

Implementation of Mac-yule Detection System (맥율 검출 시스템의 구현)

  • Kim, Hyun-Kyu;Kim, Hyun-Joon;Kim, Hyung-Tae;Choi, Tae-Jong;Byeon, Mi-Kyeong;Min, Hong-Ki;Park, Young-Bae;Huh, Woong
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.887-888
    • /
    • 2006
  • In this paper, we devised mac-yule detection system which provide resting state mac-yule. The devised system composed of signal transformation part, signal processing part, and PC based display part. Hardware part consisit of PPG, ECG, EEG, EMG, and RSP. Also, software system consist of bio-signal processing software which detecting mac-yule. EEG-$\alpha$, $\beta$ wave analysis algorithm that use wavelet transformation, RSP detecting algorithm which used zero-crossing method.

  • PDF

Development of Character Input System using Facial Muscle Signal and Minimum List Keyboard (안면근 신호를 이용한 최소 자판 문자 입력 시스템의 개발)

  • Kim, Hong-Hyun;Park, Hyun-Seok;Kim, Eung-Soo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.10a
    • /
    • pp.289-292
    • /
    • 2009
  • A person does communication between each other using language. But In the case of disabled person can not communication own idea to use writing and gesture. Therefore, In this paper, we embodied communication system using the facial muscle signals so that disabled person can do communication. Especially, After feature extraction of the EEG included facial muscle, it is converted the facial muscle into control signal, and then select character and communicate using a minimum list keyboard.

  • PDF

A Study for the Analysis of EEG Variation based on Time-Frequency Mapping (Time-Frequency Mapping에 의한 뇌파의 변화량 분석에 관한 연구)

  • Kim, J.H.;Whang, M.C.;Im, J.J.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1997 no.05
    • /
    • pp.370-373
    • /
    • 1997
  • We are exposed to the various external stimuli input from the environment, which cause emotional changes based on the characteristics of the stimuli. Unfortunately there are no quantitative results on relationship between human sensibility and the characteristics of physiological signals. The objective of this study was to quantify EEG signals evoked by auditory stimulation based on the assumption that the analysis of the variability on the characteristics of the EEG waveform may provide the significant information regarding changes in psychological states of the subject. The experiment was devised with seven experimental conditions, which are control and six different types of auditory stimulation. Six subjects were used to obtain EEGs while introducing auditory stimulation. Wavelet transformation was employed to analyze the EEG signals. The results showed that the reconstructed signals at the decomposition level revealed the different energy value on the EEG signal. Also, general patterns of EEG signals in rest state compare with negative and positive stimulus were found. This study could be extended to establish an algorithm which distinguishes psychophysiological states of the subjects exposed to the auditory stimulation.

  • PDF

A Study on the Epileptic Seizure Prediction using CNN (CNN을 이용한 뇌전증 발작예측에 관한 연구)

  • Ryu, Sanguk;Lee, Namhwa;Lee, Yeonsu;Joe, Inwhee;Min, Kyeongyuk;Kim, Taeksoo
    • Journal of the Semiconductor & Display Technology
    • /
    • v.19 no.2
    • /
    • pp.92-95
    • /
    • 2020
  • In this paper, the new architecture of seizure prediction using CNN and LSTM and DWT was presented. In the proposed architecture, EEG data was labeled into a preictal and interictal section, and DWT was adopted to the preprocessing process to apply the characteristics of the time and frequency domain of the processed EEG signal. Also, CNN was applied to extract the spatial characteristics of each electrode used for EEG measurement, and LSTM neural network was applied to verify the logical order of the preictal section. The learning of the proposed architecture utilizes the CHB-MIT Scalp EEG dataset, and the sliding window technique is applied to balance the dataset between the number of interictal sections and the number of preictal sections. As a result of the simulation of the proposed architecture, a sensitivity of 81.22% and an FPR of 0.174 were obtained.