• Title/Summary/Keyword: EEG Classification

Search Result 201, Processing Time 0.024 seconds

PCA-based Linear Dynamical Systems for Multichannel EEG Classification (다채널 뇌파 분류를 위한 주성분 분석 기반 선형동적시스템)

  • Lee, Hyekyoung;Park, Seungjin
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2002.10d
    • /
    • pp.232-234
    • /
    • 2002
  • EEG-based brain computer interface (BCI) provides a new communication channel between human brain and computer. The classification of EEG data is an important task in EEG-based BCI. In this paper we present methods which jointly employ principal component analysis (PCA) and linear dynamical system (LDS) modeling for the task of EEG classification. Experimental study for the classification of EEG data during imagination of a left or right hand movement confirms the validity of our proposed methods.

  • PDF

An Improved EEG Signal Classification Using Neural Network with the Consequence of ICA and STFT

  • Sivasankari, K.;Thanushkodi, K.
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.3
    • /
    • pp.1060-1071
    • /
    • 2014
  • Signals of the Electroencephalogram (EEG) can reflect the electrical background activity of the brain generated by the cerebral cortex nerve cells. This has been the mostly utilized signal, which helps in effective analysis of brain functions by supervised learning methods. In this paper, an approach for improving the accuracy of EEG signal classification is presented to detect epileptic seizures. Moreover, Independent Component Analysis (ICA) is incorporated as a preprocessing step and Short Time Fourier Transform (STFT) is used for denoising the signal adequately. Feature extraction of EEG signals is accomplished on the basis of three parameters namely, Standard Deviation, Correlation Dimension and Lyapunov Exponents. The Artificial Neural Network (ANN) is trained by incorporating Levenberg-Marquardt(LM) training algorithm into the backpropagation algorithm that results in high classification accuracy. Experimental results reveal that the methodology will improve the clinical service of the EEG recording and also provide better decision making in epileptic seizure detection than the existing techniques. The proposed EEG signal classification using feed forward Backpropagation Neural Network performs better than to the EEG signal classification using Adaptive Neuro Fuzzy Inference System (ANFIS) classifier in terms of accuracy, sensitivity, and specificity.

Comparison of EEG Feature Vector for Emotion Classification according to Music Listening (음악에 따른 감정분류을 위한 EEG특징벡터 비교)

  • Lee, So-Min;Byun, Sung-Woo;Lee, Seok-Pil
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.5
    • /
    • pp.696-702
    • /
    • 2014
  • Recently, researches on analyzing relationship between the state of emotion and musical stimuli using EEG are increasing. A selection of feature vectors is very important for the performance of EEG pattern classifiers. This paper proposes a comparison of EEG feature vectors for emotion classification according to music listening. For this, we extract some feature vectors like DAMV, IAV, LPC, LPCC from EEG signals in each class related to music listening and compare a separability of the extracted feature vectors using Bhattacharyya distance. So more effective feature vectors are recommended for emotion classification according to music listening.

Subject Independent Classification of Implicit Intention Based on EEG Signals

  • Oh, Sang-Hoon
    • International Journal of Contents
    • /
    • v.12 no.3
    • /
    • pp.12-16
    • /
    • 2016
  • Brain computer interfaces (BCI) usually have focused on classifying the explicitly-expressed intentions of humans. In contrast, implicit intentions should be considered to develop more intelligent systems. However, classifying implicit intention is more difficult than explicit intentions, and the difficulty severely increases for subject independent classification. In this paper, we address the subject independent classification of implicit intention based on electroencephalography (EEG) signals. Among many machine learning models, we use the support vector machine (SVM) with radial basis kernel functions to classify the EEG signals. The Fisher scores are evaluated after extracting the gamma, beta, alpha and theta band powers of the EEG signals from thirty electrodes. Since a more discriminant feature has a larger Fisher score value, the band powers of the EEG signals are presented to SVM based on the Fisher score. By training the SVM with 1-out of-9 validation, the best classification accuracy is approximately 65% with gamma and theta components.

A Comparative Study on Classification Methods of Sleep Stages by Using EEG

  • Kim, Jinwoo
    • Journal of Korea Multimedia Society
    • /
    • v.17 no.2
    • /
    • pp.113-123
    • /
    • 2014
  • Electrophysiological recordings are considered a reliable method of assessing a person's alertness. Sleep medicine is asked to offer objective methods to measure daytime alertness, tiredness and sleepiness. As EEG signals are non-stationary, the conventional method of frequency analysis is not highly successful in recognition of alertness level. In this paper, EEG signals have been analyzed using wavelet transform as well as discrete wavelet transform and classification using statistical classifiers such as euclidean and mahalanobis distance classifiers and a promising method SVM (Support Vector Machine). As a result of simulation, the average values of accuracies for the Linear Discriminant Analysis (LDA)-Quadratic, k-Nearest Neighbors (k-NN)-Euclidean, and Linear SVM were 48%, 34.2%, and 86%, respectively. The experimental results show that SVM classification method offer the better performance for reliable classification of the EEG signal in comparison with the other classification methods.

Emotion Classification based on EEG signals with LSTM deep learning method (어텐션 메커니즘 기반 Long-Short Term Memory Network를 이용한 EEG 신호 기반의 감정 분류 기법)

  • Kim, Youmin;Choi, Ahyoung
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.26 no.1
    • /
    • pp.1-10
    • /
    • 2021
  • This study proposed a Long-Short Term Memory network to consider changes in emotion over time, and applied an attention mechanism to give weights to the emotion states that appear at specific moments. We used 32 channel EEG data from DEAP database. A 2-level classification (Low and High) experiment and a 3-level classification experiment (Low, Middle, and High) were performed on Valence and Arousal emotion model. As a result, accuracy of the 2-level classification experiment was 90.1% for Valence and 88.1% for Arousal. The accuracy of 3-level classification was 83.5% for Valence and 82.5% for Arousal.

EEG Signal Classification based on SVM Algorithm (SVM(Support Vector Machine) 알고리즘 기반의 EEG(Electroencephalogram) 신호 분류)

  • Rhee, Sang-Won;Cho, Han-Jin;Chae, Cheol-Joo
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.2
    • /
    • pp.17-22
    • /
    • 2020
  • In this paper, we measured the user's EEG signal and classified the EEG signal using the Support Vector Machine algorithm and measured the accuracy of the signal. An experiment was conducted to measure the user's EEG signals by separating men and women, and a single channel EEG device was used for EEG signal measurements. The results of measuring users' EEG signals using EEG devices were analyzed using R. In addition, data in the study was predicted using a 80:20 ratio between training data and test data by applying a combination of specific vectors with the highest classifying performance of the SVM, and thus the predicted accuracy of 93.2% of the recognition rate. This paper suggested that the user's EEG signal could be recognized at about 93.2 percent, and that it can be performed only by simple linear classification of the SVM algorithm, which can be used variously for biometrics using EEG signals.

Machine Learning-Based EEG Classification for Assisting the Diagnosis of ADHD in Children (아동의 ADHD 진단 보조를 위한 기계 학습 기반의 뇌전도 분류)

  • Kim, Min-Ki
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.10
    • /
    • pp.1336-1345
    • /
    • 2021
  • Attention Deficit Hyperactivity Disorder (ADHD) is one of the most common neurological disorders in children. The diagnosis of ADHD in children is based on the interviews and observation reports of parents or teachers who have stayed with them. Since this approach cannot avoid long observation time and the bias of observers, another approach based on Electroencephalography(EEG) is emerging. The goal of this study is to develop an assistive tool for diagnosing ADHD by EEG classification. This study explores the frequency bands of EEG and extracts the implied features in them by using the proposed CNN. The CNN architecture has three Convolution-MaxPooling blocks and two fully connected layers. As a result of the experiment, the 30-60 Hz gamma band showed dominant characteristics in identifying EEG, and when other frequency bands were added to the gamma band, the EEG classification performance was improved. They also show that the proposed CNN is effective in detecting ADHD in children.

On Useful Principal Component Features for EEG Classification (뇌파 분류에 유용한 주성분 특징)

  • Park, Sungcheol;Lee, Hyekyoung;Park, Seungjin
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.04c
    • /
    • pp.178-180
    • /
    • 2003
  • EEG-based brain computer interface(BCI) provides a new communication channel between human brain and computer. EEG data is a multivariate time series so that hidden Markov model (HMM) might be a good choice for classification. However EEG is very noisy data and contains artifacts, so useful features mr expected to improve the performance of HMM. In this paper we addresses the usefulness of principal component features with Hidden Markov model (HHM). We show that some selected principal component features can suppress small noises and artifacts, hence improves classification performance. Experimental study for the classification of EEG data during imagination of a left, right up or down hand movement confirms the validity of our proposed method.

  • PDF

NMF for Motor Imagery EEG Classification (NMF를 이용한 Motor Imagery 뇌파 분류)

  • Lee Hye-Kyoung;Cichocki Andrezej;Choi Seung-Jin
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2006.06b
    • /
    • pp.34-36
    • /
    • 2006
  • In this paper we present a method of feature extraction for motor imagery single trial EEG classification, where we exploit nonnegative matrix factorization (NMF) to select discriminative features in the time-frequency representation of EEG. Experimental results with motor Imagery EEG data in BCI competition 2003. show that the method indeed finds meaningful EEG features automatically, while some existing methods should undergo cross-validation to find them.

  • PDF