• Title/Summary/Keyword: EEDI (Energy Efficiency Design Index)

Search Result 32, Processing Time 0.024 seconds

EDISON CFD를 이용한 저속비대선용 반원형 덕트 에너지 저감장치의 변수연구

  • Park, Seung-Cheol;Choe, Yeong-Min
    • Proceeding of EDISON Challenge
    • /
    • 2016.03a
    • /
    • pp.582-587
    • /
    • 2016
  • 연료효율에 대한 선주들의 요구와 그린쉽이라는 사회적 흐름에 맞춰 현재 연료 절감 장치에 대한 연구가 활발히 진행되고 있다. 본 연구에서는 KVLCC2M의 반류개선 및 연료효율 증가를 위한 반원형 덕트의 변수 연구를 진행하였으며, 계산의 신뢰도를 검증하기 위해 서울대학교 선박저항성능 연구실에서 실시한 모형 시험결과와 비교하였다. 반원형 덕트의 크기와 길이방향 위치를 설계변수로 설정하여, 총 12가지 경우에 대한 CFD 계산을 시행하였으며, 계산 결과를 유동 정류를 통한 저항 감소와 반류 개선을 통한 프로펠러의 성능 개선 이라는 두 가지 기준으로 최적 조건을 선정하였다. 또한, 후처리를 통해 계산 결과를 추가적으로 분석하여 에너지 절감의 이론적인 배경을 찾았으며, 이를 바탕으로 반원형 덕트를 개선하여 부채꼴형 덕트를 새로이 설계하였다. 이에 대한 추가적인 계산 결과 최대 4%의 연료절감 효과를 최종 확인하였다.

  • PDF

Numerical Study of Pre-swirl Stator for Model and Full Scales (스케일 변화에 따른 전류고정날개의 영향 수치해석)

  • Park, Sunho;Oh, Gwangho;Rhee, Shin Hyung;Koo, Bon-Yong;Lee, Hoseong
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.17 no.3
    • /
    • pp.205-211
    • /
    • 2014
  • Interests on energy saving devices (ESDs) have been increased with the concern of the energy efficiency design index (EEDI) developed by the international maritime organization (IMO). To study the influence of ESDs, KVLCC2 with energy saving pre-swirl stator (PSS) was selected. To validate the computations, computed nominal wake of the model scale ship was compared with the experimental data, and the numerical uncertainty assessment was done for the full scale ship computations. The PSS changed rotational flow, which was assistant to the propeller thrust for the model and full scale ships. Performances of the full scale ships were predicted by ITTC methods, and new prediction method was proposed.

A Study on Air Resistance and Greenhouse Gas Emissions of an Ocean Leisure Planning Boat (해양레저용 활주형선의 공기저항 및 온실 가스 배출에 대한 연구)

  • Kim, Y.S.;Hwang, S.K.
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.16 no.3
    • /
    • pp.202-210
    • /
    • 2013
  • As incomes increase, interest in ocean leisure picks up. As a result, a lot of research and developments on hull form design and production of planing boats, mostly used for ocean leisure, are needed. Analysis in researches on resistance of planing boats shows that resistance characteristic of planing boats is different from resistance characteristic of general boats because the former is fast, and its wetted surface is very small. Using Savitsky formula widely used in the calculation of effective horse power in shipbuildingyards, and propulsion system and engine manufacturers, this study calculated total resistance of a research planing boat. Then it analyzed the flow characteristics of the planing boat through theoretical analysis and wind tunnel experiment, and computed air resistance and lift force by changes of speed and trim angle. It also compared and analyzed result of theoretical analysis and experiment of the ratio of air resistance to total resistance under variations of velocity and trim angle. When the study is used to estimate more accurate effective horse power, it is expected to remedy abuses of unnecessarily installing high-powered engine. As nature disasters due to abnormal changes of weather increase, interest in greenhouse gas grows. International Maritime Organization (IMO) legislated Energy Efficiency Design Index (EEDI) and Energy Efficiency Operational Indicator (EEOI) to reduce ship greenhouse gas emissions. But this index will be applied to over 400 tons ships, small ships, emitting more greenhouse gases than larege ships per unit power, will dodge the regulations. Thus, this study indicated a problem by calculating greenhouse gas emissions of an ocean leisure planning boat (a small ship), and suggested the need for EEDI of small ships.

Uncertainty Analysis for Speed and Power Performance in Sea Trial using Monte Carlo Simulation (몬테카를로 시뮬레이션을 이용한 시운전 선속-동력 성능에 대한 불확실성 해석)

  • Seo, Dae-Won;Kim, Min-Su;Kim, Sang-Yeob
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.56 no.3
    • /
    • pp.242-250
    • /
    • 2019
  • The speed and power performance of a ship is not only a guarantee issue between the ship owner and the ship-yard, but also is related with the Energy Efficiency Design Index (EEDI) regulation. Recently, International Organization for Standardization (ISO) published the procedure of the measurement and assessment for ship speed and power at sea trial. The results of speed and power performance measured in actual sea condition must inevitably include various uncertainty factors. In this study, the influence for systematic error of shaft power measurement system was examined using the Monte Carlo simulation. It is found that the expanded uncertainty of speed and power performance is approximately ${\pm}1.2%$ at the 95% confidence level(k=2) and most of the uncertainty factor is attributed to shaft torque measurement system.

Estimation of ship operational efficiency from AIS data using big data technology

  • Kim, Seong-Hoon;Roh, Myung-Il;Oh, Min-Jae;Park, Sung-Woo;Kim, In-Il
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.440-454
    • /
    • 2020
  • To prevent pollution from ships, the Energy Efficiency Design Index (EEDI) is a mandatory guideline for all new ships. The Ship Energy Efficiency Management Plan (SEEMP) has also been applied by MARPOL to all existing ships. SEEMP provides the Energy Efficiency Operational Indicator (EEOI) for monitoring the operational efficiency of a ship. By monitoring the EEOI, the shipowner or operator can establish strategic plans, such as routing, hull cleaning, decommissioning, new building, etc. The key parameter in calculating EEOI is Fuel Oil Consumption (FOC). It can be measured on board while a ship is operating. This means that only the shipowner or operator can calculate the EEOI of their own ships. If the EEOI can be calculated without the actual FOC, however, then the other stakeholders, such as the shipbuilding company and Class, or others who don't have the measured FOC, can check how efficiently their ships are operating compared to other ships. In this study, we propose a method to estimate the EEOI without requiring the actual FOC. The Automatic Identification System (AIS) data, ship static data, and environment data that can be publicly obtained are used to calculate the EEOI. Since the public data are of large capacity, big data technologies, specifically Hadoop and Spark, are used. We verify the proposed method using actual data, and the result shows that the proposed method can estimate EEOI from public data without actual FOC.

Numerical Simulations of Added Resistance and Motions of KCS in Regular Head Waves (선수 규칙파 중 KCS의 부가저항 및 운동성능 수치해석)

  • Seo, Seonguk;Park, Sunho
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.54 no.2
    • /
    • pp.132-142
    • /
    • 2017
  • As the International Maritime Organization (IMO) recently introduced the Energy Efficiency Design Index (EEDI) for new ships building and the Energy Efficiency Operational Indicator (EEOI) for ship operation, thus an accurate estimation of added resistance of ships advancing in waves has become necessary. In the present study, OpenFOAM, computational fluid dynamics libraries of which source codes are opened to the public, was used to calculate the added resistance and motions of the KCS. Unstructured grid using a hanging-node and cut-cell method was used to generate dense grid around a wave and KCS. A dynamic deformation mesh method was used to consider the motions of the KCS. Five wavelengths from a short wavelength (${\lambda}/LPP=0.65$) to a long wavelength (${\lambda}/LPP=1.95$) were considered. The added resistance and the heave & pitch motions calculated for various waves were compared with the results of model experiments.

Pre-Swirl Duct of Fuel Oil Saving Device Design and Analysis for Ship (선박용 연료절감장치 Pre-Swirl Duct의 설계 및 평가방법 연구)

  • Shin, Hyun-Joon;Lee, Kang-Hoon;Han, Myung-Ryun;Lee, Chang-Yul;Shin, Sung-Chul
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.50 no.3
    • /
    • pp.145-152
    • /
    • 2013
  • Recently, with oil price jumping and environmental issues, Green ship is paid deep attention to by ship owner, operator, builder, class and government. Fuel efficiency and reduction of $CO_2$ emissions are expected to have a strong influence on the design and operation of merchant ships. Many ship owners and operators are seeking the more economic method by the best operating route and the application of reliable and effective energy saving devices. With the Energy Efficiency Design Index (EEDI) in 2013 attention will more than ever be focused at achieving maximum fuel economy in the hydrodynamic design of hull forms, their appendages and propellers. IMO requirements for $CO_2$ emission for ships will now be implemented for vessels ordered from 1st January 2013. So far, a lot of new idea and patents have been proposed, tested, claimed and applied for various kinds of ship type. This paper shows numerical and experimental work related to a study on a energy saving devices particularly for fuller ship such as merchant vessel of Tanker and Bulker. From the bare hull wake measurements, typical upper/lower asymmetry of hull wake at the propeller disk was found. The pre-swirl duct have been designed and reviewed to recover the loss of propeller running in that condition. The general function of the pre-swirl duct was set to work against this asymmetry of wake and generate pre-swirled flow into the propeller against the propeller rotating direction.

Numerical Study on Optimization of Bulb Type Twisted Rudder for KCS (KCS용 벌브형 비대칭 타의 최적화에 대한 수치적 성능 연구)

  • Kim, Myoung-Gil;Kim, Moon-Chan;Shin, Yong-Jin;Kang, Jin-Gu
    • Journal of Ocean Engineering and Technology
    • /
    • v.32 no.6
    • /
    • pp.419-426
    • /
    • 2018
  • Recently, in an effort to reduce the energy efficiency design index (EEDI), studies on energy saving devices (ESDs) have been conducted. In this study, we designed a post-device suitable for a KRISO container ship (KCS) using computational fluid dynamics (CFD). In order to increase the efficiency of the post-device, a twisted rudder was used, which has a proven performance (showing a 1.34% reduction in DHP compared to the bare hull at 24 knots) in previous research at Pusan National University. In addition, an increase in efficiency was expected by the use of a rudder bulb, including the discontinuous section of the twisted rudder and a divergent propeller cap to prevent the contraction of the wake. The optimization criterion was the case where the delivery power was the least compared with the bare hull. We analyzed the cause of the efficiency increase through an analysis of the self-propulsion factor. The case study for optimization was divided into 4 types (1. clearance of the bulb and cap, 2. shape of the bulb, 3. size of the bulb and cap, and 4. asymmetric bulb). Finally, with a clearance of 50 mm from the ship, a spherical bulb with the cap having an angle of $5^{\circ}$, and an asymmetric rudder bulb with a bulb diameter of 1.2HH/1.4H (horizontal/vertical) showed a 2.05% reduction in DHP compared to the bare hull at 24 knots. We will fabricate a post-device that will be optimized in the future and verify the performance of the post-device through model tests.

A study on the developments of STCW training of seafarers on ships applying in the IGF Code

  • Han, Se-Hyun;Lee, Young-Chan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.10
    • /
    • pp.1054-1061
    • /
    • 2015
  • The International Maritime Organization (IMO) has been regulating emissions by making mandatory the compliance with institutions aimed at protecting air quality such as the Energy Efficiency Design Index (EEDI), Ship Energy Efficiency Management Plan (SEEMP) and Tier III. Under the circumstances, one of the response measures considered to be the most feasible is the replacement of existing marine fuel with Liquefied Natural Gas (LNG). The industry has been preemptively building infrastructure and developing and spreading engine technology to enable the use of LNG-fueled ships. The IMO, in turn, recently adopted the International Code of Safety for Ships Using Gases or Other Low-Flash-Point Fuels (IGF Code) as an institutional measure. Thus, it is required to comply with regulations on safety-related design and systems focused on response against potential risk for LNG-fueled ships, in which low-flash-point fuel is handled in the engine room. Especially, the Standards of Training, Certification and Watchkeeping (STCW) Convention was amended accordingly. It has adopted the qualification and training requirements for seafarers who are to provide service aboard ships subject to the IGF Code exemplified by LNG-fueled ships. The expansion in the use of LNG-fueled ships and relevant facilities in fact is expected to increase demand for talents. Thus, the time is ripe to develop methods to set up appropriate STCW training courses for seafarers who board ships subject to the IGF Code. In this study, the STCW Convention and existing STCW training courses applied to seafarers offering service aboard ships subject to the IGF Code are reviewed. The results were reflected to propose ways to design new STCW training courses needed for ships subject to the IGF Code and to identify and improve insufficiencies of the STCW Convention in relation to the IGF Code.

On the Weight Reduction of Longitudinal Members of Mid-Sized Bulk Carrier Considering the Minimum Shear Force according to Compartment Arrangement based on H-CSR (구획배치에 따른 최소 전단력을 고려한 H-CSR 기반 중형 살물선 종강도 부재의 중량 절감 방안 연구)

  • Na, Seung-Soo;Song, Ha-Cheol;Jeong, Sol;Park, Min-Cheol;Bae, Sang-Don
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.54 no.4
    • /
    • pp.352-359
    • /
    • 2017
  • Because the Energy Efficiency Design Index(EEDI) came into effect in 2013, it is necessary to develop a new technology to overcome $CO_2$ emission regulations. In structural design viewpoint, lots of researches are carried out to develop eco-friendly and high fuel efficiency ships by weight reduction. By using the automated compartment arrangement system and automated structural design algorithm which were developed by the authors, new researches are performing to combine the above two systems. However, the effect of weight reduction was not significant because structural designs by using these systems for the midship part was carried out only focused on the minimum still water bending moment. In this paper, at first, good compartment arrangements which give the minimum still water bending moment and(or) shear force were chosen by using the automated compartment system. And then, influence of shear force on weight reduction was investigated by using the automated structural design algorithm considering longitudinal strength, local strength and shear strength of longitudinal members in cargo holds. Conclusively, it is necessary to consider the minimum still water bending moment and shear force simultaneously to reduce the weight of mid-sized bulk carrier. Also, good compartment arrangement which gives much more weight reduction compared with existing ship was proposed.