• Title/Summary/Keyword: EDTA treatment

Search Result 237, Processing Time 0.026 seconds

Effect of Enzyme Retting on the Fiber Separation of Kenaf Bast - influence of chelator - (효소 레팅에 의한 케냐프 섬유의 분리 -킬레이터의 영향-)

  • 이혜자;안춘순;김정희;유혜자;한영숙;송경헌
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.28 no.7
    • /
    • pp.873-881
    • /
    • 2004
  • This research was aimed to investigate the effect of enzyme and the addition of chelators on rotting of the Kenaf bast. Enzyme rotting was effective only when the chelators were added with the enzyme. EDTA was a more effective chelator than oxalic acid under 1% concentration. There was no difference in the rotting effect under different enzyme concentration levels, and under different treatment time and temperature. Therefore, it was found that enzyme rotting can be carried out with low enzyme concentration(0.125%) at room temperature. Retting time can be shortened when higher enzyme concentration and higher temperature are applied. Cellulose I structure of kenaf fiber did not change after enzyme rotting, and different enzyme concentration did not affect the crytallinity structure. Non-cellulosic matters such as hemicellulose, lignin, and pectin were present in the descending order in the enzyme rotted kenaf fiber, and there were no differences in their amounts due to enzyme concentration levels. There was no difference in the dyeabilities of kenaf fiber rotted with different enzyme concentration levels. Enzyme rotted kenaf fiber showed better cyeability when pectin, lignin, and hemicellulose were removed.

Isolation and Purification of Chitin from Shrimp Shells by Protease Pretreatment (Protease의 전처리에 의한 새우껍질로부터 키틴의 분리와 정제)

  • Ryu, Beung-Ho;Lee, Sang-Hoon
    • Korean Journal of Food Science and Technology
    • /
    • v.27 no.1
    • /
    • pp.6-10
    • /
    • 1995
  • Chitin was prepared from Solenocera prominentis by deproteinization pretreatment of Neutrase. The optimal enzyme concentration of neutrase, pH, and temperature on deproteinization were 3.0 mg/ml, pH 6.0 and $50^{\circ}C$ as indicated by the minimum protein remaining on the chitin. The residual protein, the degree of deacetylation, Ca and P content in chitin prepared from Solenocera prominentis were similar with commercial chitin. The molecular weight was $1.2{\times}10^{8}$ dalton and the yield of chitin was 25.8%.

  • PDF

Conditions for protoplast formation and fusion of the killer yeast (Killer 효모의 원형질체 형성 및 융합조건)

  • 정기택;방광웅;송형익;김재근;정용진
    • Korean Journal of Microbiology
    • /
    • v.27 no.4
    • /
    • pp.422-429
    • /
    • 1989
  • Auxotrophic mutant were isolated from wild types by the treatment with NTG as a mutagen, and the conditions of protoplast formation for them were established. The protoplasts of killer yeast Saccharomyces cerevisiae K52 were formed to the level of above 70% when cells grown for 20 hr in PM medium were treated with 200 unit/ml Lyticase 50,000 at $30^{\circ}C$ for 60 min after pretreatment of 50 mM 2-mercaptoethanol in 10mM potassium phosphate buffer (pH 7.5) containing EDTA and 0.6 M sorbitol for 15 min. Also, the protoplast of the recipient S. cerevisiae S 29 were formed to the level of above 85% as it was cultured to the log phase of 24 hr in PM medium under the same conditions. The fusion frequency between the protoplast of killer yeast S. cerevisiae K 52 and the protoplast of recipient S. cerevisiae S 29 was reached to $8.2\times 10^{-6}$ when the hypertonic regeneration medium embeded with the fused protoplasts after mixing the parental protoplasts to 10$^{8}$ cells/ml in SP buffer containing 20 mM $CaCl_{2}$ and 30% PEG 6,000 for 15 min at $30^{\circ}C$ were incubated.

  • PDF

Optimum Conditions for Transformation of Synechocystis sp. PCC 6803

  • Zang, Xiaonan;Liu, Bin;Liu, Shunmei;Arunakumara, K.K.I.U.;Zhang, Xuecheng
    • Journal of Microbiology
    • /
    • v.45 no.3
    • /
    • pp.241-245
    • /
    • 2007
  • This study was conducted to determine the optimal conditions for introduction of exogenous DNA into Synechocystis sp. PCC 6803. Of the three transformation techniques studied, electroporation, ultrasonic transformation and natural transformation, natural transformation showed the highest efficiency. Additionally, this study demonstrated that the higher plasmid concentration and longer homologous recombining fragments resulted in a greater number of transformants. For successful transformation, the lowest concentration of plasmid was $0.02\;{\mu}g/ml$, and the shortest homologous recombining fragment was 0.2 kb. Use of Synechocystis sp. PCC 6803 in the logarithmic growth phase resulted in two-fold higher transformation rate than that of the same organism when cells in the latent phase or the plateau phase were used for transformation. Pretreatment of the host strain, Synechocystis sp. PCC 6803, with EDTA (2 mM) for two days prior to transformation increased the transformation efficiency by 23%. Additionally, incubation of the cells and DNA for 5 h under light conditions increased the transformation efficiency by two orders of magnitude. Moreover, recovery treatment of the cells before they were plated onto antibiotic medium also increased the transformation efficiency.

Separation and Enzymological Characteristics of Polygalacturonase by Aspergillus sp. (Aspergillus속이 생산하는 Polygalacturonase의 분리 및 특성)

  • 차원섭;김진구;박준희;오상룡;천성숙;조영제
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.24 no.4
    • /
    • pp.570-577
    • /
    • 1995
  • Aspergillus sp. SB-2704 was selected for its strong polygalacturonase activity among various strain of mold found in soil. It was found that production of polygalacturonase reached to maximum when the wheat bran medium containing 1% polypepton, 1% glucose, and 0.2% FeSO4 were cultured for 3 days at 35$^{\circ}C$. Polygalacturonase was purified 20.90 fold from Aspergillus SB-2704. The purification procedures include ammonium sulfate treatment, gel filtration on Sephdex G-150 and DEAE-cellulose ion exchange chromatography. Yield of the enzyme purification was 4.34%. Purified enzyme was confirmed as a single band by the polyacrylamide gel electrophoresis. When the purified enzyme was applied to SDS-polyacrylamide gel electrophoresis, the molecular weight was estimated to be 36,000. The optimum pH for the enzyme activity was 5.5 and optimum temperature was 5$0^{\circ}C$. The enzyme is stable in acidic condition. The activity of purified enzyme was inhibited by Pb2+, Hg2+ and Ba2+, whereas activated by Cu2+, Mn2+, Mg2+ and Fe2+. The activity of polygalacturonase was inhibited by the treament wit maleic anhydride, iodine, and EDTA. The result indicate the possible involvement of histidine and metal ion at active site.

  • PDF

Chemical cleaning of fouled polyethersulphone membranes during ultrafiltration of palm oil mill effluent

  • Said, Muhammad;Mohammad, Abdul Wahab;Nor, Mohd Tusirin Mohd;Abdullah, Siti Rozaimah Sheikh;Hasan, Hassimi Abu
    • Membrane and Water Treatment
    • /
    • v.5 no.3
    • /
    • pp.207-219
    • /
    • 2014
  • Fouling is one of the critical factors associated with the application of membrane technology in treating palm oil mill effluent (POME), due to the presence of high concentration of solid organic matter, oil, and grease. In order to overcome this, chemical cleaning is needed to enhance the effectiveness of membranes for filtration. The potential use of sodium hydroxide (NaOH), sodium chloride (NaCl), hydrochloric acid (HCl), ethylenediaminetetraacetic acid (EDTA), and ultrapure water (UPW) as cleaning agents have been investigated in this study. It was found that sodium hydroxide is the most powerful cleaning agent, the optimum conditions that apply are as follows: 3% for the concentration of NaOH, $45^{\circ}C$ for temperature solution, 5 bar operating pressure, and solution pH 11.64. Overall, flux recovery reached 99.5%. SEM images demonstrated that the membrane surface after cleaning demonstrated similar performance to fresh membranes. This is indicative of the fact that NaOH solution is capable of removing almost all of the foulants from PES membranes.

Chromophorylation of a Novel Cyanobacteriochrome GAF Domain from Spirulina and Its Response to Copper Ions

  • Jiang, Su-Dan;sheng, Yi;Wu, Xian-Jun;Zhu, Yong-Li;Li, Ping-Ping
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.2
    • /
    • pp.233-239
    • /
    • 2021
  • Cyanobacteriochromes (CBCRs) are phytochrome-related photoreceptor proteins in cyanobacteria and cover a wide spectral range from ultraviolet to far-red. A single GAF domain that they contain can bind bilin(s) autocatalytically via heterologous recombination and then fluoresce, with potential applications as biomarkers and biosensors. Here, we report that a novel red/green CBCR GAF domain, SPI1085g2 from Spirulina subsalsa, covalently binds both phycocyanobilin (PCB) and phycoerythrobilin (PEB). The PCB-binding GAF domain exhibited canonical red/green photoconversion with weak fluorescence emission. However, the PEB-binding GAF domain, SPI1085g2-PEB, exhibited an intense orange fluorescence (λabs.max = 520 nm, λfluor.max = 555 nm), with a fluorescence quantum yield close to 1.0. The fluorescence of SPI1085g2-PEB was selectively and instantaneously quenched by copper ions in a concentration-dependent manner and exhibited reversibility upon treatment with the metal chelator EDTA. This study identified a novel PEB-binding cyanobacteriochrome-based fluorescent protein with the highest quantum yield reported to date and suggests its potential as a biosensor for the rapid detection of copper ions.

Effect of 840 nm Light-Emitting Diode(LED) Irradiation on Monosodium Iodoacetate-Induced Osteoarthritis in Rats (흰쥐의 MIA 유발 무릎 뼈관절염에 대한 840 nm LED의 효과)

  • Jekal, Seung-Joo;Kwon, Pil-Seung;Kim, Jin-Kyung;Lee, Jae-Hyoung
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.9 no.2
    • /
    • pp.151-159
    • /
    • 2014
  • PURPOSE: The purpose of this study was to evaluate whether light-emitting diodes (LED) irradiation could be effective in a noninvasive, therapeutic device for the treatment of osteoarthritis(OA). METHODS: Twenty-four male Sprague-Dawley rats were divided into four groups: Vehicle control (saline); monosodium iodoacetate-injection (MIA); LED irradiation after MIA injection (MIA-LED); indomethacin-treatment after MIA injection (MIA-IMT). OA was induced by intra-articular injection of 3 mg MIA through the patellar ligament of the right knee. Vehicle control rats were injected with an equivalent volume of saline. The LED was irradiated for 15 min/day for a week after 7 days of MIA treatment. To compare with the effect of LED irradiation, the indomethacin was administrated 20 mg/kg twice a week orally after 7 days of MIA treatment. Knee joints were removed and fixed overnight in 10% neutral buffered formalin and decalcified by EDTA for 2 week before being embedded in paraffin. The assessment of OA induction were monitored by knee movement and radiographic finding. Histologic analysis were performed following staining with hematoxylin and eosin, safranin O-fast green, or toluidine blue, picrosirius red, and histologic changes were scored according to a modified Mankin system. Apoptotic cell in tissue sections was detected using TUNEL method. RESULTS: Radiographic examination could not show the differences between the MIA-treated and the MIA-LED-treated rats. In the histologic analysis, however, LED irradiation prevented cartilage damage and subchondral bone destruction, and significantly reduced mononuclear inflammatory cell infiltration and pannus formation. LED irradiation also reduced apoptosis of cartilage cells, but it prevented apoptosis of infiltrated inflammatory cells in synovium. In addition, LED irradiation showed an increase of collagen production in the meniscus. CONCLUSION: These results suggest that the 840 nm LED irradiation would be a suitable non-thermal phototherapy for the treatment of OA, as a cartilage protection and anti-inflammatory modality.

Characterization of a Novel Fibrinolytic Enzyme, BsfA, from Bacillus subtilis ZA400 in Kimchi Reveals Its Pertinence to Thrombosis Treatment

  • Ahn, Min-Ju;Ku, Hye-Jin;Lee, Se-Hui;Lee, Ju-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.12
    • /
    • pp.2090-2099
    • /
    • 2015
  • Recently, the cardiovascular disease has been widely problematic in humans probably due to fibrin formation via the unbalanced Western style diet. Although direct (human plasmin) and indirect methods (plasminogen activators) have been available, bacterial enzyme methods have been studied because of their cheap and mass production. To detect a novel bacterial fibrinolytic enzyme, 111 bacterial strains with fibrinolytic activity were selected from kimchi. Among them, 14 strains were selected because of their stronger activity than 0.02 U of plasmin. Their 16S rRNA sequence analysis revealed that they belong to Bacillus, Leuconostoc, Propionibacterium, Weissella, Staphylococcus, and Bifidobacterium. The strain B. subtilis ZA400, with the highest fibrinolytic activity, was selected and the gene encoding fibrinolytic enzyme (bsfA) was cloned and expressed in the E. coli overexpression system. The purified enzyme was analyzed with SDS-PAGE, western blot, and MALDI-TOF analyses, showing to be 28.4 kDa. Subsequently, the BsfA was characterized to be stable under various stress conditions such as temperature (4-40oC), metal ions (Mn2+, Ca2+, K2+, and Mg2+), and inhibitors (EDTA and SDS), suggesting that BsfA could be a good candidate for development of a novel fibrinolytic enzyme for thrombosis treatment and may even be useful as a new bacterial starter for manufacturing functional fermented foods.

Phosphorylation of silk fibroin and its properties (견 피브로인의 인산화와 그 특성)

  • 문장희;김정호;배도규;신봉섭
    • Journal of Sericultural and Entomological Science
    • /
    • v.43 no.2
    • /
    • pp.116-124
    • /
    • 2001
  • To improve the functional properties as a food, silk fibroin was phosphorylated with STMP In the phosphorylation reaction of silk fibroin, the degree of phosphorylation was increased with high alkali index and treatment temperature. Depending on treatment time and concentration of STMP it was rapidly increased up to 1hr. and 50%, but slowly above that time and 100%. It was indicated in the results of FT-IR analysis and $\^$31/p NMR spectroscopy of phosphorylated fibroin that it had a close ∝-helix and poly-phosphate structure. The more phosphorylation of fibroin made more turbidity, foam expansion and foam stability, but less solubility. Emulsifying activity was increased up to P100, but slightly decreased above Pl00 and emulsifying stability was constantly increased on the progressing of phosphorylation.

  • PDF