• Title/Summary/Keyword: EDLCs

Search Result 35, Processing Time 0.036 seconds

A Study of Voltage Balancing Method in Series-Connected EDLCs for High Power Applications (다중 직렬 연결된 대용량 EDLC 모듈에 적합한 전압 밸런싱 기법에 대한 연구)

  • Cha, Dae-Joong;Baek, Ji-Eun;Ko, Kwang-Cheol
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.7
    • /
    • pp.22-27
    • /
    • 2015
  • In this paper, the problem of voltage unbalancing in series-connected multiple electric double-layer capacitors(EDLCs) is studied. Good understanding of this problem is required in order to increase reliability and stability of an energy storage system comprising EDLCs. Existing methods to settle voltage unbalancing cannot mitigate the problem enough for each cell, since most method have been applied to each module. For equalizing between cells, Zener diode which is one of passive method have been well examined in literature. However, Zener have well not used in balancing due to heating problem. In addition, It is difficult to choose Zener diode fitted rating voltage of EDLC, because of its internal resistance. Thus, we proposed passive balancing using Zener diode by analyzing parasitic element of Zener and EDLC. To experimentally confirm the balancing effect, we compared in two occasions which are with and without passive. As a result, proposed passive balancing circuit mitigated unbalanced voltage gap between EDLCs.

Studies of Electric Double Layer Capacitors Used For a Storage Battery of Dye Sensitized Solar Cell Energy

  • Kim Hee-Je;Jeon Jin-An;Sung Youl-Moon;Yun Mun-Soo;Choi Jin-Young
    • Journal of Electrical Engineering and Technology
    • /
    • v.1 no.2
    • /
    • pp.251-256
    • /
    • 2006
  • To design the effective usage of electric double layer capacitors (EDLCs) used for a storage device of dye sensitized solar cell (DSC) energy, we first investigated the accumulation state of electrical charges and the charge behavior in the EDLCs. Based on the results, the voltage characteristics of EDLCs connected to DSC energy were evaluated. The results showed that the charge accumulation region concentrated on the central part of the carbonaceous electrode in EDLCs and the required times for charging and discharging were almost the same.

Studies of electric double layer capacitors used for a storage battery of dye sensitized solar cell energy (염료감응형 태양전지의 축전지로 사용되는 전기이중층콘덴서에 대한 연구)

  • Choi, Jin-Young;Lee, Im-Geun;Hong, Ji-Tae;Kim, Hee-Je
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.11a
    • /
    • pp.673-676
    • /
    • 2005
  • To design the effective usage of electric double layer capacitors (EDLCs) used for a storage device of dye sensitized solar cell(DSC) energy, we first investigated the accumulation state of electrical charges and the charge behavior in the EDLCs. Based on the results. the voltage characteristics of EDLCs connected to DSC energy were evaluated. The results showed that the charge accumulation region concentrated on central part of the carbonaceous electrode in EDLCs and the required times for charging and discharging were almost the same.

  • PDF

Charge Distribution in a capacitor observed by PEA Method (PEA법에 의한 캐패시터내 전하분포 측정)

  • Endrowednes, Kuantama;Han, Deok-Woo;Kwak, Dong-Joo;Sung, Youl-Moon
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1156-1157
    • /
    • 2008
  • The use of the pulsed electro acoustic (PEA) method allowed us to perform the direct observations of spatio-temporal charge distributions in Electric double layer capacitors (EDLCs) based on polarizable nanoporous carbonaceous electrode. The negative charge density became the maximum, about 205 $C/m^3$ at the region where was near to collector layer in EDLCs for case $V_{DC}$ = 2.5 V, while the positively charged density became the maximum, about 61.1 $C/m^3$ at the region where it was located around the cathode layer. The PEA measurement used here is a very useful method to quantitively investigates the spatio-temporal charge distribution in EDLCs.

  • PDF

Electrochemical Characterization of Electric Double Layer Capacitors Assembled with Pyrrolidinium-Based Ionic Liquid Electrolytes

  • Cho, Jinhyun;Shin, Won-Kyung;Kim, Dong-Won;Kim, Young Rae;Lee, Byung Jun;Kim, Sang-Gil
    • Journal of Electrochemical Science and Technology
    • /
    • v.7 no.3
    • /
    • pp.199-205
    • /
    • 2016
  • We present the electrochemical performance of electric double layer capacitors (EDLCs) assembled with pyrrolidinium (Pyr)-based ionic liquid electrolytes at 55 ℃. Cations with various alkyl chain lengths were employed in Pyr-based ionic liquids to investigate the effect of cation structure on the cycling stability of EDLCs. The EDLCs exhibited initial specific capacitances ranging from 122.4 to 131.6 F g−1 based on activated carbon material at 55 ℃. Cycling data and XPS results demonstrate that Pyr-based ionic liquid with longer alkyl chain is more effective for enhancing the cycling stability of EDLC by suppressing the reductive decomposition of pyrrolidinium cations during cycling at high temperatures.

Charging and Discharging Characteristics of Electric Double Layer Capacitors used for a Storage Battery of Solar Energy

  • Sung, Youl-Moon
    • Transactions on Electrical and Electronic Materials
    • /
    • v.8 no.2
    • /
    • pp.97-102
    • /
    • 2007
  • The charging/discharging characteristics of electric double layer capacitors (EDLCs) for an electric power storage device application were investigated. The specific area of the carbonaceous electrode surface by the BET method was in the range of $1800{\sim}2000\;m^2/g$. The charge distributions during charging and discharging were measured by means of a pulsed-electro-acoustic (PEA) method, and the voltage characteristics of EDLCs connected to solar cells were evaluated. The results showed that the distributions of positive and negative charges were spatially uneven, which was due to the mobility of the positive and negative charges in the carbonaceous electrode surface of the EDLCs. The charge accumulation region concentrated on central part of the carbonaceous electrode and the required times for charging and discharging were almost same.

Investigation of Charge distribution in an Electric double layer capacitor (전기이중층 캐패시터 내의 전하분포 고찰)

  • Endrowednes, Kuantama;Jessi, Darma;Sung, Youl-Moon;Kim, Kwang-Tae
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2008.10a
    • /
    • pp.201-204
    • /
    • 2008
  • The use of the pulsed electro acoustic (PEA) method allowed us to perform the direct observations of spatio-temporal charge distributions in Electric double layer capacitors (EDLCs) based on polarizable nanoporous carbonaceous electrode. The negative charge density became the maximum, about 205 C/$m^3$ at the region where was near to collector layer in EDLCs for case $V_{DC}$ = 2.5 V, while the positively charged density became the maximum, about 61.1 C/$m^3$ at the region where it was located around the cathode layer. The PEA measurement used here is a very useful method to quantitively investigates the spatio-temporal charge distribution in EDLCs.

  • PDF

Spatio-temporal Charge Distribution in Electric Double Layer Capacitors observed by pulsed Electro Acoustic Method

  • Sung, Youl-Moon
    • Transactions on Electrical and Electronic Materials
    • /
    • v.8 no.4
    • /
    • pp.182-187
    • /
    • 2007
  • The use of the pulsed electro acoustic (PEA) method allowed us to perform the direct observations of spatio-temporal charge distributions in Electric double layer capacitors (EDLCs) based on polarizable nanoporous carbonaceous electrode. The negative charge density became the maximum, about $205C/m^3$ at the region where was near to collector layer in EDLCs for case $V_{DC}=2.5V$, while the positively charged density became the maximum, about $61.1C/m^3$ at the region where it was located around the cathode layer. The performance of the best sample was found to be better in terms of the charge density (Cs) and specific energy ($E_s$) with a maximum value of ${\sim}8.4F/g$ and 26 Wh/kg. The $C_s$ obtained from the PEA method agreed well with that from the energy conversion method. The PEA measurement used here is a very useful method to quantitively investigates the spatio-temporal charge distribution in EDLCs.

Solid state electrochemical double layer capacitors with natural graphite and activated charcoal composite electrodes

  • Hansika, P.A.D.;Perera, K.S.;Vidanapathirana, K.P.;Zainudeen, U.L.
    • Advances in materials Research
    • /
    • v.8 no.1
    • /
    • pp.37-46
    • /
    • 2019
  • Electrochemical double layer capacitors (EDLCs) which are fabricated using carbon based electrodes have been emerging at an alarming rate to fulfill the energy demand in the present day world. Activated charcoal has been accepted as a very suitable candidate for electrodes but its cost is higher than natural graphite. Present study is about fabrication of EDLCs using composite electrodes with activated charcoal and Sri Lankan natural graphite as well as a gel polymer electrolyte which is identified as a suitable substitute for liquid electrolytes. Electrochemical Impedance Spectroscopy, Cyclic Voltammetry and Galvanostatic Charge Discharge test were done to evaluate the performance of the fabricated EDLCs. Amount of activated charcoal and natural graphite plays a noticeable role on the capacity. 50 graphite : 40 AC : 10 PVdF showed the optimum single electrode specific capacity value of 15 F/g. Capacity is determined by the cycling rate as well as the potential window within which cycling is being done. Continuous cycling resulted an average single electrode specific capacity variation of 48 F/g - 16 F/g. Capacity fading was higher at the beginning. Later, it dropped noticeably. Initial discharge capacity drop under Galvanostatic Charge Discharge test was slightly fast but reached near stable upon continuous charge discharge process. It can be concluded that initially some agitation is required to reach the maturity. However, the results can be considered as encouraging to initiate studies on EDLCs using Sri Lankan natural graphite.

Electrochemical Properties of EDLC Electrodes with Diverse Graphene Flake Sizes (그래핀 플레이크 크기에 따른 전기 이중층 커패시터용 전극의 전기화학적 특성)

  • Yu, Hye-Ryeon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.2
    • /
    • pp.112-116
    • /
    • 2018
  • Electric double layer capacitors (EDLCs) are promising candidates for energy storage devices in electronic applications. An EDLC yields high power density but has low specific capacitance. Carbon material is used in EDLCs owing to its large specific surface area, large pore volume, and good mechanical stability. Consequently, the use of carbon materials for EDLC electrodes has attracted considerable research interest. In this paper, in order to evaluate the electrochemical performance, graphene is used as an EDLC electrode with flake sizes of 3, 12, and 60 nm. The surface characteristic and electrochemical properties of graphene were investigated using SEM, BET, and cyclic voltammetry. The specific capacitance of the graphene based EDLC was measured in a 1 M $TEABF_4/ACN$ electrolyte at the scan rates of 2, 10, and 50 mV/s. The 3 nm graphene electrode had the highest specific capacitance (68.9 F/g) compared to other samples. This result was attributed to graphene's large surface area and meso-pore volume. Therefore, large surface area and meso-pore volume effectively enhances the specific capacitance of EDLCs.