• Title/Summary/Keyword: EDF

Search Result 200, Processing Time 0.027 seconds

CHAINED COMPUTATIONS USING AN UNSTEADY 3D APPROACH FOR THE DETERMINATION OF THERMAL FATIGUE IN A T-JUNCTION OF A PWR NUCLEAR PLANT

  • Pasutto, Thomas;PENiguel, Christophe;Sakiz, Marc
    • Nuclear Engineering and Technology
    • /
    • v.38 no.2
    • /
    • pp.147-154
    • /
    • 2006
  • Thermal fatigue of the coolant circuits of PWR plants is a major issue for nuclear safety. The problem is especially accute in mixing zones, like T-junctions, where large differences in water temperature between the two inlets and high levels of turbulence can lead to large temperature fluctuations at the wall. Until recently, studies on the matter had been tackled at EDF using steady methods: the fluid flow was solved with a CFD code using an averaged turbulence model, which led to the knowledge of the mean temperature and temperature variance at each point of the wall. But, being based on averaged quantities, this method could not reproduce the unsteady and 3D effects of the problem, like phase lag in temperature oscillations between two points, which can generate important stresses. Benefiting from advances in computer power and turbulence modelling, a new methodology is now applied, that allows to take these effects into account. The CFD tool Code_Saturne, developped at EDF, is used to solve the fluid flow using an unsteady L.E.S. approach. It is coupled with the thermal code Syrthes, which propagates the temperature fluctuations into the wall thickness. The instantaneous temperature field inside the wall can then be extracted and used for structure mechanics computations (mainly with EDF thermomechanics tool Code_Aster). The purpose of this paper is to present the application of this methodology to the simulation of a straight T-junction mock-up, similar to the Residual Heat Remover (RHR) junction found in N4 type PWR nuclear plants, and designed to study thermal striping and cracks propagation. The results are generally in good agreement with the measurements; yet, in certain areas of the flow, progress is still needed in L.E.S. modelling and in the treatment of instantaneous heat transfer at the wall.

SiRENE: A new generation of engineering simulator for real-time simulators at EDF

  • David Pialla;Stephanie Sala;Yann Morvan;Lucie Dreano;Denis Berne;Eleonore Bavoil
    • Nuclear Engineering and Technology
    • /
    • v.56 no.3
    • /
    • pp.880-885
    • /
    • 2024
  • For Safety Assisted Engineering works, real-time simulators have emerged as a mandatory tool among all the key actors involved in the nuclear industry (utilities, designers and safety authorities). EDF, Electricité de France, as the leading worldwide nuclear power plant operator, has a crucial need for efficient and updated simulation tools for training, operating and safety analysis support. This paper will present the work performed at EDF/DT to develop a new generation of engineering simulator to fulfil these tasks. The project is called SiRENE, which is the acronym of Re-hosted Engineering Simulator in French. The project has been economically challenging. Therefore, to benefit from existing tools and experience, the SiRENE project combines: - A part of the process issued from the operating fleet training full-scope simulator. - An improvement of the simulator prediction reliability with the integration of High-Fidelity models, used in Safety Analysis. These High-Fidelity models address Nuclear Steam Supply System code, with CATHARE thermal-hydraulics system code and neutronics, with COCCINELLE code. - And taking advantage of the last generation and improvements of instructor station. The intensive and challenging uses of the new SiRENE engineering simulator are also discussed. The SiRENE simulator has to address different topics such as verification and validation of operating procedures, identification of safety paths, tests of I&C developments or modifications, tests on hydraulics system components (pump, valve etc.), support studies for Probabilistic Safety Analysis (PSA). etc. It also emerges that SiRENE simulator is a valuable tool for self-training of the newcomers in EDF nuclear engineering centers. As a modifiable tool and thanks to a skillful team managing the SiRENE project, specific and adapted modifications can be taken into account very quickly, in order to provide the best answers for our users' specific issues. Finally, the SiRENE simulator, and the associated configurations, has been distributed among the different engineering centers at EDF (DT in Lyon, DIPDE in Marseille and CNEPE in Tours). This distribution highlights a strong synergy and complementarity of the different engineering institutes at EDF, working together for a safer and a more profitable operating fleet.

Performance Evaluation for Scheduling Policies on a Realtime Database (실시간 데이터베이스에 대한 스케쥴링 정책의 성능 평가)

  • Kim, Suhee;Han, Kwangrok;Kim, Hwankoo;Son, Sang-Hyuk
    • Convergence Security Journal
    • /
    • v.4 no.3
    • /
    • pp.57-82
    • /
    • 2004
  • The confluence of computers, communications, and databases is quickly creating a distributed database where many applications require real-time access to temporally consistent sensor data. We have developed an object-oriented real-time database system called BeeHive to provide a significant improvement in performance and functionality over conventional non-real-time database and object management systems. In this paper, the performance of two data-deadline cognizant scheduling policies EDDF and EDF-DC and the baseline EDF policy with/without admission control are evaluated through extensive experiments on BeeHive. The ranges where data-deadline cognizant scheduling policies are effective and where admission control plays a role are identified.

  • PDF

Real-Time Scheduling Scheme Based on Context-Aware Priority in Ubiquitous Smart Space (유비쿼터스 환경에서의 상황 인지적 우선순위 기반의 실시간 스케줄링 기법)

  • Lee, Hyo-Nam;Lim, Sung-Hwa;Kim, Jai-Hoon
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2008.06b
    • /
    • pp.388-393
    • /
    • 2008
  • 유비쿼터스 지능 공간 환경에서 중요한 이슈는 사용자에게 현재 상황에 최적의 서비스를 제공하는 것이며, 이를 위해서 상황 인식(Context Aware) 기법에 대한 연구가 널리 진행되고 있다. 유비쿼터스 지능 공간은 분산 배치된 수많은 애플리케이션 및 장치와 같은 스마트 객체들이 존재하여 사용자에게 최적의 서비스를 제공하는 환경이다. 유비쿼터스 지능 공간에서는 각 스마트 객체가 수집하는 데이터는 무수히 많다. 사용자에게 최적의 서비스를 제공하기 위해선 데이터들을 빠르게 처리하여 서비스를 제공하여야 한다. 현재 연구된 스케줄링 방법은 데이터 처리에만 중점을 두었기 때문에 스스로 상황을 인지하여 예측하여야 하는 유비쿼터스 지능 공간을 위한 미들웨어에는 적합하지 않다. 본 논문은 수집한 데이터를 바탕으로 상황을 인식하고 태스크의 우선순위를 재조정하는 상황 인지형 실시간 스케줄링 기법을 제안한다. 제안하는 상황 인지형 실시간 스케줄링 기법인 U-RM, U-EDF와 기존의 RM, EDF 알고리즘을 비교하여 성능평가를 한 결과 U-RM은 기존의 RM보다 최대 20.7%의 성능 향상을 보였으며, U-EDF의 경우 기존의 EDF 보다 최대 26.8%의 성능 향상을 보였다.

  • PDF

An EDF Based Real-Time Scheduling Algorithm for Imprecise Computation (불확정 계산을 위한 EDF 기반의 실시간 스케줄링 알고리즘)

  • Choi, Hwan-Pil;Kim, Yong-Seok
    • The KIPS Transactions:PartA
    • /
    • v.18A no.4
    • /
    • pp.143-150
    • /
    • 2011
  • This paper presents an EDF based scheduling algorithm for scheduling imprecise computation model where each task consists of mandatory part and optional part. Imprecise computation is useful to manage overload condition. In overload situation, some optional parts should be removed. The proposed DOP algorithm removes optional parts of earlier deadline tasks to enhance flexibly for newly arriving tasks. A simulation result shows that DOP has better performance than other algorithms.

An Implementation of Selection Algorithm for Efficient Scheduling on Real-Time Linux Environment (실시간 Linux 환경에서 효율적인 스케쥴링을 위한 선택 알고리즘의 구현)

  • 김성락
    • Journal of the Korea Society of Computer and Information
    • /
    • v.7 no.2
    • /
    • pp.1-8
    • /
    • 2002
  • By now, Schedulers for RMS and EDF are implemented for real-time Linux Scheduler. These Schedulers are used for do not consider there's characteristics. Missing Schedulability-test cause result that increase deadline miss rate. Also The present real-time Linux causes system halt Because of scheduling for unschedulable tasks . These appearances are very fatal for real-time system. Therefor, In this paper The peaceful schedulability-test use scheduler which is proper characteristics of RMS and EDF scheduling methods. This scheduler keeps deadline and eliminates system halt from scheduling unschedulable tasks. In this paper, we propose the schedulability-test algorithm and scheduler select algorithm for the effective management of tasks sets.

  • PDF

STATUS AND PERSPECTIVE OF TWO-PHASE FLOW MODELLING IN THE NEPTUNE MULTISCALE THERMAL-HYDRAULIC PLATFORM FOR NUCLEAR REACTOR SIMULATION

  • BESTION DOMINIQUE;GUELFI ANTOINE;DEN/EER/SSTH CEA-GRENOBLE,
    • Nuclear Engineering and Technology
    • /
    • v.37 no.6
    • /
    • pp.511-524
    • /
    • 2005
  • Thermalhydraulic reactor simulation of tomorrow will require a new generation of codes combining at least three scales, the CFD scale in open medium, the component scale and the system scale. DNS will be used as a support for modelling more macroscopic models. NEPTUNE is such a new generation multi-scale platform developed jointly by CEA-DEN and EDF-R&D and also supported by IRSN and FRAMATOME-ANP. The major steps towards the next generation lie in new physical models and improved numerical methods. This paper presents the advances obtained so far in physical modelling for each scale. Macroscopic models of system and component scales include multi-field modelling, transport of interfacial area, and turbulence modelling. Two-phase CFD or CMFD was first applied to boiling bubbly flow for departure from nucleate boiling investigations and to stratified flow for pressurised thermal shock investigations. The main challenges of the project are presented, some selected results are shown for each scale, and the perspectives for future are also drawn. Direct Numerical Simulation tools with Interface Tracking Techniques are also developed for even smaller scale investigations leading to a better understanding of basic physical processes and allowing the development of closure relations for macroscopic and CFD models.

LARGE SCALE FINITE ELEMENT THERMAL ANALYSIS OF THE BOLTS OF A FRENCH PWR CORE INTERNAL BAFFLE STRUCTURE

  • Rupp, Isabelle;Peniguel, Christophe;Tommy-Martin, Michel
    • Nuclear Engineering and Technology
    • /
    • v.41 no.9
    • /
    • pp.1171-1180
    • /
    • 2009
  • The internal core baffle structure of a French Pressurized Water Reactor (PWR) consists of a collection of baffles and formers that are attached to the barrel. The connections are done thanks to a large number of bolts (about 1500). After inspection, some of the bolts have been found cracked. This has been attributed to the Irradiation Assisted Stress Corrosion Cracking (IASCC). The $Electricit\acute{e}$ De France (EDF) has set up a research program to gain better knowledge of the temperature distribution, which may affect the bolts and the whole structure. The temperature distribution in the structure was calculated thanks to the thermal code SYRTHES that used a finite element approach. The heat transfer between the by-pass flow inside the cavities of the core baffle and the structure was accounted for thanks to a strong thermal coupling between the thermal code SYRTHES and the CFD code named Code_Saturne. The results for the CP0 plant design show that both the high temperature and strong temperature gradients could potentially induce mechanical stresses. The CPY design, where each bolt is individually cooled, had led to a reduction of temperatures inside the structures. A new parallel version of SYRTHES, for calculations on very large meshes and based on MPI, has been developed. A demonstration test on the complete structure that has led to about 1.1 billion linear tetraedra has been calculated on 2048 processors of the EDF Blue Gene computer.

Tests based on EDF statistics for randomly censored normal distributions when parameters are unknown

  • Kim, Namhyun
    • Communications for Statistical Applications and Methods
    • /
    • v.26 no.5
    • /
    • pp.431-443
    • /
    • 2019
  • Goodness-of-fit techniques are an important topic in statistical analysis. Censored data occur frequently in survival experiments; therefore, many studies are conducted when data are censored. In this paper we mainly consider test statistics based on the empirical distribution function (EDF) to test normal distributions with unknown location and scale parameters when data are randomly censored. The most famous EDF test statistic is the Kolmogorov-Smirnov; in addition, the quadratic statistics such as the $Cram{\acute{e}}r-von$ Mises and the Anderson-Darling statistic are well known. The $Cram{\acute{e}}r-von$ Mises statistic is generalized to randomly censored cases by Koziol and Green (Biometrika, 63, 465-474, 1976). In this paper, we generalize the Anderson-Darling statistic to randomly censored data using the Kaplan-Meier estimator as it was done by Koziol and Green. A simulation study is conducted under a particular censorship model proposed by Koziol and Green. Through a simulation study, the generalized Anderson-Darling statistic shows the best power against almost all alternatives considered among the three EDF statistics we take into account.